摘要(英) |
In this thesis, the study is first to explore the optical characteristics of the refraction type solar concentrator module, especially to minimize the volume size (thickness) of the convergent solar light and the light pattern modulation of the convergent focus, and further to increase the optical conversion efficiency of the Solar Cells. To improve the thermophile characteristics and to reduce the high cost of the Solar Cells, the application of the concentrating solar module is adopted so as to enhance the lens caused by un-even surface illumination by the light pattern and solve the problem of concentrating the regional heat of the Solar Cells, and to gain a higher level of the Solar Cells conversion efficiency (88%).
In the previous study, LightTools optical software was used to simulate the surface illuminance of the Solar Cells and the light beams distribution of the light receiving surface, and then to calculate the light conversion efficiency of the surface area; with Fresnel lenses (100x ~ 300x) and the focal lens position (100mm ~ 300mm) to calculate the standard module conversion efficiency (Max: 82%) by the QC tools of DOE analysis method, the control group is used to calculate the standard module conversion efficiency, in which the SOE element can help change the focus light pattern to increase the module conversion efficiency; however, the refraction module is conditioned by the length of the focal lens and the heavy and large size of the volume. In order to make the concentrator module universal, the experimental group in the study is used by using the concept of reflection, the focusing and Sun light of the incident light, the position of the transposed Solar Cells to upside, and then doing the DOE analysis method with Fresnel lenses (40x ~ 100x) and the focal lens position (100mm) calculated. The module conversion efficiency (Max: 88%) of this study is also related to assessing whether the tolerances in the actual assemble and production design would destroy the simulation results of this thesis.
By the LightTools optical software optimized module, the total volume thickness is reduced from 22cm to 4.2cm with the light pattern uniform distribution and the acceptance angle of the thin type concentrator is 1.00 degree (Due to LightTools optical software, light source setup without solar solid angle 0.25 degree, need to decrease acceptance angle around 0.25 degree), respectively and the optical efficiency is up to Max 88%. The results of the study strongly support the application of the concentrating solar modules in an increase of the competitiveness of manufacturing and a decrease of the material assembly and the delivery cost.
Keywords: solar concentrator module, Fresnel lenses, LightTools |
參考文獻 |
參考文獻
[1] 經濟部自願性綠色電價制度試辦計畫 於中華民國104年1月1日http://greenpower.ltc.tw/Content/doc/
[2] 光電科技概論 國立中央大學光電科學與工程學系著 第二十三章,pp.
[3]陳紀帆 ”太陽能聚光系統之菲涅爾透鏡相關光學設計研究” 碩士學位論文 光電工程學系 國立東華大學, pp. 1, 2014..
[4]B.David, B. Jon, D. Paul, G. Vance, H. Kent, M. Robert, S. Glenn, S. Vaclav T. Tom, “Global Lukewarming: Another Good Intellectual Year(2012 Edition)”,(2013)
[5]Natalya V. Yastrebova, “High-efficiency multi-juntion solar cell: Current status and future potential”, Centre for Research in Photonics, University of Ottawa, April 2007
[6]Simon Rushworth, High Purity metalorganic Precursors for CPV Device Fabrication, Material Matrers Volume 5 Articl 4,(11/29/2011).
[7]Ralf Leutz, A. Suzuki, “ Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrator” chapter4 Springer(2006)
[8] "鄒淵翔 ”高倍率聚光型太陽能模組之熱傳及轉換效率分析與聚光鏡設計” 博士學位論文 機械工程學系 國立成功大學, pp. 11, 2014.
[9] "林侑陞 ” 聚光型太陽能電池設計模組之二次光學元件設計與分析” 碩士學位論文 光電科學研究所 國立中央大學, pp. 6 & 46, 2008.
[10] "葉上平 ”用於 三五族太陽能電池之高效率且均勻化聚光鏡之研究” 碩士學位論文 光電工程學系 國立中央大學, pp. 2, 2008.
[11] "林侑陞 ” 聚光型太陽能電池設計模組之二次光學元件設計與分析” 碩士學位論文 光電科學研究所 國立中央大學, pp.22- 40, 2008.
[12] "劉得驊 ”化學鍵密度分析程式平行化 MPI實作” 碩士學位論文 應用數學系計算科學碩士班 國立中興大學, pp.17, 2013.
[13] "鄒淵翔 ”高倍率聚光型太陽能模組之熱傳及轉換效率分析與聚光鏡設計” 博士學位論文 機械工程學系 國立成功大學, pp. 1, 2014.
[14] Jui-Wen Pan, Yu-Chung Su1 and Sheng-Yi Lee "Optimized planar micro-optic concentrator design", Journal of Optics, Vol.18, No. 6 pp.2, 2016.
[15] Ngoc Hai Vu and Seoyong Shin "A Large scale day lighting system based on a stepped thickness waveguide", MDPI-Energies, Vol.9, No. 2 pp.3 2016.
[16] Glassner “An Introduction to RAY TARCING” Academic Press(1989)
[17] Warren J. Smith “MODERN OPTICAL ENGINEERING” second edition McGraw-Hill,Inc, (1990)
[18] 蔡宓吟,”階梯光學應用於覆晶LED上之研究” ,碩士論文,光電科學與工程學系 國立中央大學,2004
[19] Virendra N. Mahajan, “Optical Imaging and Aberrations” Academic Press, (1989)
[20] 李儼鵬,”二次太陽能集光器” ,碩士論文,光電科學與工程學系 國立中央大學,2012
[21] 邵穗鵬,”光學透鏡系統實例設計與評估” ,碩士論文,國立中央大學,2004
[22] W.T.Welford and R. Winston, “High Collection Nonimaging Optis”, (Academic press), (1998)
[23] 陳景華 ”以LightTools光學設計軟體分析LED頭燈雛型Study on LED Headlamp Model by LightTools Software” 碩士學位論文 光電與材料科技研究所 國立虎尾科技大學, pp. 23, 2011.
[24] 王柏閔 ”太陽光模擬系統之設計與製作” 碩士學位論文 機械工程學系光機電工程碩士班 國立中央大學, pp. 29, 2015.
[25] CYBERNET思渤科技公司 網頁http://www.cybernet-ap.com.tw/zh.php?m=884&t=70
[26] 陳弈超 ” 適應性汽車頭燈設計與公差分析” 碩士學位論文 機械與精密工程研究所國立高雄應用科技大學, pp. 67, 2015. |