博碩士論文 103226050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:3.145.59.187
姓名 洪毓瑄(Yu-Hsuan Hung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以電漿子增強螢光顯微術結合反摺積描繪金屬奈米結構
(Mapping of Metallic Nanostructures by Plasmon Enhanced Fluorescence Microscopy in Combination of Deconvolution Method)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用反摺積技術重建R6G螢光分子在金屬奈米結構上隨機發光的過程,以獲得一張超解析影像。透過金屬電漿子增強螢光訊號強度,來凸顯金屬與基板訊號上的差異,再控制螢光分子濃度使之稀疏發光,進而達到單分子發光,由於布朗運動的關係,螢光分子會隨機出現在樣品上,錄製每個時刻的螢光影像,再透過反摺積運算,疊加一張張反摺積後的螢光影像,便能描繪出金屬奈米結構。若能成功達到與電子顯微鏡相同解析度,便是建立了一項超解析影像技術,此技術將超越光學顯微鏡的解析度,且不具有像電子顯微鏡有破壞樣品的風險。
摘要(英) This research by using the method of deconvolution rebuild the process of random blinking caused by Rhodamine 6G on nanoscale metal structures, obtaining a super resolution image as result. In order to enhance the S/N ratio between nanoscale metal structures and substrates, we take advantage of surface plasmons to rise the intensity of fluorescence on nanoscale metal structures. Further, by adjusting the concentration of Rhodamine 6G solution to achieve the goal of single molecular blinking.
By Brownian motion theory, Rhodamine 6G molecules would appear on sample randomly. With the films and images of fluorescence taking place on nanoscale metal structures, we could rebuild the morphology of nanoscale metal structures through deconvolution calculations. If the resolution of the final result reach the same level as SEM, it can be seen as a super resolution technique. This technique could provide higher resolution images than conventional optical microscopes, also could avoid the risk of destroying samples by using SEM.
關鍵字(中) ★ 螢光顯微術
★ 反摺積
★ 金屬奈米結構
關鍵字(英) ★ Fluorescence Microscopy
★ Deconvolution
★ Metallic Nanostructures
論文目次

中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究背景 3
 近場掃描光學顯微術 4
 共焦掃描顯微術 5
 受激放射消去顯微術 6
 單分子定位顯微術 8
 結構化照明顯微術 8
1.3研究動機與目的 11
1.4論文架構概述 12
第二章 原理與研究方法 13
2.1 螢光發光原理 13
2.1.1 Jablonski 能階圖 13
2.1.2 生命週期、量子產率 16
2.1.3 螢光特性介紹 18
2.2 金屬與螢光分子之交互作用 19
2.2.1金屬物質特性 19
2.2.2表面增強效應 27
2.2.3 金屬與螢光分子間的增強與猝滅 33
2.3 單分子定位 36
2.3.1 Localization-based-質心座標定位 37
2.3.2 Image-deconvolution-based 41
第三章 樣品製作與實驗架構 47
3.1實驗流程 47
3.2樣品製作 48
3.3螢光量測 50
3.4 單分子中心定位 53
第四章 實驗結果與討論 59
4.1遠場量測結果 59
4.2重建超解析影像結果與分析 64
第五章 結論與未來展望 68
參考文獻 69
參考文獻

[1] http://scimonth.blogspot.tw/2014/12/blog-post_64.html?m=1
[2]E. Betzig, S. W. Hell, W. E. Moerner, The Nobel Prize In Chemistry (2014)
[3]T. Ha, P. Tinnefeld, “Photophysics of fluorescence probes for single molecule biophysics and super resolution imaging,” Annual Review Physical Chemistry 63(1), 595-617 (2012)
[4]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the prescence of multiple fluorophore,” Nano Letters 11, 5090-5096 (2011)
[5]S. A. Hussain, “An introduction to fluorescence resonance energy transfer(FRET)”
[6] D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Applied Physics Letters 44(7), 651-653 (1984)
[7]A. Harootunian, E. Betzig, M. Isaacson, A. Lewis. “Super-resolution fluorescence near-field scanning optical microscopy,” Applied Physics Letters 49(11), 674-676 (1986)
[8]Lipson S. G., Lipson H., Optical Physics, 4th edition, Cambridge University Press (2011).
[9] https://en.wikipedia.org/wiki/STED_microscopy
[10]Cornea A., Conn P. M., Fluorescence microscopy: Super-Resolution and other Novel Techniques, Academic Press, USA (2014).
[11]M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy”, Journal of Microscopy 198(2), 82-87 (2000)
[12]Bernard Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH, Weinheim (2002)
[13]Drude and Paul, “Zur Elektronentheorie der metalle” Annalen der Physik 306, 566 (1990)
[14]N. W. Ashcroft, N. D. Mermin, Solid State Physics, page 6
[15]M. A. Ordal, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, “Optical Properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24(24), 4493-4499 (1985)
[16]A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics 37(22), 5271-5283 (1998)
[17]D. Barchiesi and T. Grosges, “Fitting the Optical Constants of Gold, Silver, Chromium, Titanium, and Aluminum in the Visible Bandwidth,” Journal of Nanophotonics 8(1), 083097 (2014)
[18]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370-4379 (1972)
[19]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum, ” Proceeding of the Physical Society 18, 269-275 (1902)
[20]U. Fano, “The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces, ” Journal of the Optical Society of America 31, 213-222 (1941)
[21]R. H. Ritchie, “Plasma losses by fast electrons in thin films, ” Physical Review 106, 874-881 (1957)
[22]A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968)
[23]E. Kretschm and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light, ”Z. Naturf. 23A, 2135-2136 (1968)
[24]M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3(10), 793-796 (2006)
[25]M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angewandte Chemie International Edition 47, 6172-6176 (2008)
[26]E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 6172-6176 (2006)
[27]A. Burger, S. Letschert, S. Doose, M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochemistry and Cell Biology 144(2), 123-131 (2015)
[28]Y. Feng, J. Goree, B. Liu, “Accurate position measurement from images” Review of Scince Instruments 78 (5), 053704 (2007)
[29]C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nature Methods 7, 373-375 (2010)
[30]M. P. Gordon, T. Ha, P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. 101(17), 6462-6465 (2004)
[31]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Letters 11(11), 5090-5096 (2011)
[32]F. Huang, S. L. Schwartz, J. M. Byars, K. A.Lidke, “Simultaneous ,multiple-emitter fitting for single molecule super-resolution imaging,” Biomedical Optics Express 2, 1377-1393 (2011)
[33]P. Sarder, A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Processing Magazine 23(2), 32-45 (2006)
[34]E. A. Mukamel, H. Babcock, X. Zhuang, “Stastical deconvolution for supperresolution fluorescence microscopy,” Biophysical Journal 102, 2391-2400 (2012)
[35]L. Lucy, “An iterative technique for the rectification of observed distribution,” Astronomical Journal 79(6), 745-766 (1974)
[36]W. Richardson, “Bayesian-based iterative method of image restoration,” Optical Society of America 62(1), 55-59 (1972)
[37]L. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging 1(2), 113-122 (1982)
[38]H. Sun, M. Yu, G. Wang, X. Sun, and J. Lian, “Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films,” J. Phys. Chem. C 116(16), 9000-9008, 2012
[39]張勝涵,於離子交換波導表面組裝三角晶格之奈米粒子陣列實現具指向性中間解析之拉曼光譜,國立中央大學光電所碩士論文,中華民國一零五年六月
[40]J. R. Lakowicz, “Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmin Emission” Analytical Biochemistry 337, 171-194 (2005)
[41]J. R. Lakowicz, Y. Shen, S. D’Auria, J.Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, “Radiative Decay Engineering 2: Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer” Analytical Biochemistry 301, 261-277 (2002)
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明