博碩士論文 105226041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.142.197.121
姓名 詹皓勛(Hao-Xun Zhan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用角度偏折量測法之成像系統Abbe正弦條件量測
(Sine Condition Test by Angular Deflectometry)
相關論文
★ 中小型光學鏡組之高密度全場波前量測★ 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置
★ 全像場同時取像像差量測★ 單頻位移與傾角量測干涉儀
★ 廣角物鏡之相對照度探討及其設計應用★ 新型零後焦長太陽能集光器的設計
★ 相移式干涉儀之系統校正及量測軟體的撰寫★ 非球面干涉儀之離軸對心校正
★ 高數值孔徑顯微物鏡設計★ Double Zernike Polynomial 校準光學系統
★ 薄型化光展量疊加太陽能集光器★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor
★ 雷射微型投影機波前量測技術★ 旋轉掃描式非球面干涉儀之演算法開發及應用
★ 校準低敏型Shack-Hartmann波前感測器★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文有兩大主題,第一為提出使用線掃描法取代相移法之角度偏折量測法,第二為應用角度偏折量測法於成像系統Abbe正弦條件之量測。
在2015年本實驗室曾提出使用相移法之角度偏折量測法,其使用現成的雷射投影機檢測成像系統之橫向像差,本篇論文則提出以權重重心理論及線掃描的方式取代原本的相移量測,此量測方式以較多的量測時間,解決了前者量測結果誤差受雷射投影機之有限灰階值影響的問題。
本篇論文的第二部分探討成像系統其違反Abbe正弦條件的誤差量,和與物場呈線性之離軸像差,兩者之間的關係,並引入前一部分探討之角度偏折量測法,以角解析度達角秒等級精確度量測物空間及像空間各光線向量,並探討系統之校準誤差和計算之與物場呈線性之離軸像差關係。
摘要(英)
There are two main topics in this paper: the advanced angular deflectometry with line scanning and centroid method and the application of angular deflectometry to the Abbe sine condition test.
In our previous publications, we successfully made a deflectometry measurement using a portable laser projector. In this study, we propose the beam weighting centroid method instead of the phase-shifting method to quantify the angular direction of the testing beam in the tested optics entrance pupil. By projecting the angular sequential lines on the tested optics entrance pupil, the wavefront aberration is reconstructed from two orthogonal direction measurements similarly to the line-scanning deflectometry. Therefore, the limited grayscale problem of the laser projector during the phase-shifting measurement is eliminated. The reconstructed wavefront is proven to yield a more accurate result than the phase-shifting methods at the cost of more image frames and acquisition time.
With the on-axis deflectometry measurement using a laser projector, which is called angular deflectometry, we discuss the relation between the Abbe sine condition violation and the linear field dependent aberrations because of the pupil mapping error of the image system. Then, we apply the angular deflectometry measurement to the sine condition test, which can measure the ray angles in the object and image space with arc-second order precision. Finally, we examine the relation between linear field dependent aberrations and the system misalignment.
關鍵字(中) ★ 光學元件檢測
★ Abbe正弦條件
★ 角度偏折量測法
關鍵字(英) ★ optical testing
★ Abbe sine condition
★ angular deflectometry
論文目次
摘要 I
English Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
1 Introduction 1
1-1 Deflectometry history 1
1-2 Sine condition test history 2
1-3 Research motivation 3
2 Aberration and measurement theory 5
2-1 Focal plane measurement methods and principle 5
2-2 Zernike polynomials and gradient Zernike polynomials 7
2-3 Laser projector system 9
2-4 Gaussian beam propagation 9
2-5 Angular line-scanning deflectometry 11
2-6 Deference between angular and spatial deflectometry 13
2-7 Abbe sine condition and offense against the sine condition 15
2-8 Vector form of the OSC and pupil mapping error 16
2-9 Sine condition test prior art 20
IV
3 Multiple-line-scanning deflectometry experiment 22
3-1 Limited grayscale capability of the laser projector 22
3-2 Elements in the measurement system 24
3-3 Line-scanning measurement process 25
3-4 Building the four-dimensional ray data 27
3-5 Multiple-line-scanning deflectometry 31
3-6 Comparison of the test result with the simulation 34
3-7 Test results of PSD, single LSD and multiple LSD 35
4 Sine condition test experiment 37
4-1 Angular deflectometry system 37
4-2 Measurement processing 38
4-3 Testing result for the misalignment system 46
4-4 CodeV simulation for the misalignment system 49
5 Discussion and summary 56
5-1 Angular line-scanning deflectometry 56
5-2 Sine condition test by angular deflectometry 57
REFERENCE 58
參考文獻 [1] P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized reverse Hartmann test,” Applied Optics, Vol. 49, pp. 4404-4412, 2010.
[2] P. Su, S. Wang, M. Khreishi, Y. Wang, T. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II, 84500W, September 13, 2012.
[3] P. Su, Y. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Optics Express, Vol. 20, pp. 12393-12406, 2012.
[4] P. Su, M. Khreishi, R. Huang, T. Su, and J. H. Burge, “Precision aspheric optics testing with SCOTS: a deflectometry approach,” Proc. SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII, 87881E, May 13, 2013.
[5] T. Bothe, W. Li, C. von Kopylow, and W. P. O. Juptner, “High-resolution 3D shape measurement on specular surfaces by fringe reflection,” Proc. SPIE 5457, Optical Metrology in Production Engineering, 411, September 10, 2004.
[6] W. Jüptner, and T. Bothe, “Sub-nanometer resolution for the inspection of reflective surfaces using white light,” Proc. SPIE 7405, Instrumentation, Metrology, and Standards for Nanomanufacturing III, 740502, August 20, 2009.
[7] G.P. Butel, G. A. Smith, and J. H. Burge, “Deflectometry using portable devices,” Optical Engineering, Vol. 54(2), 025111, February 17, 2015.
[8] G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Applied Optics, Vol. 53, pp. 923-930, 2014.
[9] M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, Optical Metrology in Production Engineering, 366, September 10, 2004.
[10] J. W. Chen, C. W. Liang, and S. H. Chen, “Wavefront measurement made by an off-the-shelf laser-scanning pico projector,” Applied Optics, Vol 54, pp. E235-E240, 2015.
[11] W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. Vol. 70, pp. 998-1006, 1980.
[12] H. X. Zhan, C. W. Liang, and S. C. Chien, “Line scanning deflectometry using a laser pico projector,” Proc. SPIE 9960, Interferometry XVIII, 99600O, August 28, 2016.
[13] E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv fuer mikroskopische Anatomie 9,” pp. 413-468, 1873.
[14] G. D. Wasserman, and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, pp. 2-8, 1949.
[15] L. Mertz, “Geometrical design for aspheric reflecting systems,” Applied Optics, Vol. 18, pp. 4182-4186, 1979.
[16] J. H. Burge, and J. R. P. Angel, “Wide field telescope using spherical mirrors,” Proc. SPIE 5174, pp. 83-92, 2004.
[17] B. McLeod, “Collimation of fast wide-field telescopes,” Publ.Astron. Soc. Pac. 108, pp. 217–219, 1996.
[18] L. Noethe, “Final alignment of the VLT,” Proc. SPIE 4003, pp. 382–390, 2000.
[19] H. Lee, “Optimal collimation of misaligned optical systems by concentering primary field aberrations,” Optics Express, Vol. 18, pp. 19249–19262, 2010.

[20] R. Tessieres, “Analysis for Alignment of Optical Systems”, University of Arizona, 2003.
[21] J.H. Burge, C. Zhao, M.B. Dubin, and S. Lampen, “Determination of off-axis aberrations of imaging systems using on-axis measurements,” Proc. SPIE 8129, Novel Optical Systems Design and Optimization XIV, 81290F, 2011.
[22] S. Lampen, M.B. Dubin, and J.H. Burge, “Implementation of sine condition test to measure optical system misalignments,” Applied Optics, Vol. 50, pp. 6391-6398, 2011.
[23] J. H. Burge, C. Zhao, and M. B. Dubin, “Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems,” in International Optical Design Conference and Optical Fabrication and Testing, OSA Technical Digest (CD), Optical Society of America, 2010.
[24] S. Lampen, M.B. Dubin, and J.H. Burge, “Use of a flat panel display for measurement of sine condition violations.” Proc. SPIE 8491, Optical System Alignment, Tolerancing, and Verification VI, 84910F, 2012.
[25] J. C. Wyant, and K. Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering, Vol.XI, 13-14, 1992.
[26] I. Ghozeil, D. Malacara, “Chapter 13. Zernike Polynomial and Wavefront Fitting,” in Optical Shop Testing 3rd edition, pp. 498-546, 2007.
[27] J.Wyant, and K. Creath, ”Basic wavefront aberration theory for optical metrology,” Applied Optics, Vol. XI, pp. 28-34, 1992.
[28] M. Niesten, T. Masood, J. Miller, J. Tauscher, “Scanning laser beam displays based on a 2D MEMS,” Proc. SPIE 7723, Optics, Photonics, and Digital Technologies for Multimedia Applications, 77230U, May 05, 2010.
[29] B. Saleh, and M. Teich, “Chapter 3. Beam optics,” in Fundamentals of Photonics, pp. 80-93, 1991
指導教授 梁肇文(Chao-Wen Liang) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明