博碩士論文 103682001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.48.135
姓名 詹海柏(Hai-Po Chan)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以衛星熱紅外影像資料探勘及監測北台灣的地熱與火山活動
(Exploring and monitoring geothermal and volcanic activities using Satellite Thermal Infrared data in Northern Taiwan)
相關論文
★ 台灣中央山脈東翼的活動構造★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要      
地熱能源是全球綠色能源日益重要的成分。地熱能源開發的先決條件是地方和區域性的地熱探勘,實務上由於探勘現場的運行成本和場址可達性,現行探勘或監測地熱資源的地球物理方法通常受限於局部範圍,因此大規模區域的探勘或監測(例如表面溫度和地熱異常)主要仰賴於衛星熱紅外影像技術。本研究旨在將熱紅外(TIR)遙測技術與現有地球物理方法結合運用於台灣北部的地熱探勘與火山監測上面。
本文研究區域為台灣北部地熱的兩個高潛能區:1)台灣東北的宜蘭平原;2)台灣北部的大屯火山群(TVG)。首先以地球資源衛星Landsat 7 ETM + 的影像來反演估算宜蘭平原和TVG的地表溫度(LST),再通過與11個常設氣象站的氣溫數據進行比較分析,對衛星估算的地表溫度(LST)進行精度評估,結果顯示氣溫數據與反演的LST線性回歸的相關係數為0.76,最後將LST結果加以非監督分類得到LST分類圖,進而分析宜蘭平原與TVG的地熱異常型態。MODIS LST產品也用來交叉驗證了Landsat LST的可靠性,另外從1999至2016年的Landsat ETM +多時亮溫圖也用來檢驗了LST異常型態分布。
應用TIR遙測在宜蘭平原的結果顯示,地熱異常區域的分布與斷層的位置相關聯。將地熱異常區域和溫泉和地熱井的現場調查進行驗證,發現非都市區的溫泉和地熱井的位置與地熱異常區域有很好的一致性。此外,針對清水地熱區進行詳細比較分析,發現由大地電磁法所獲得的電阻率剖面中的低電阻率區域與LST剖面中的低地溫區相當吻合。
應用TIR遙測在TVG的研究中,使用Landsat 7 ETM + 影像反演估算地表溫度(LST)和輻射熱通量(RHF),並採用搭載在Aqua衛星上的MODIS感測器之LST產品(2002-2016年)對TVG的金山斷層帶加以時序分析。結果表明,衛星反演的LST異常區與溫泉和火山噴氣孔區域吻合;且TVG的東西方向火山山脊的平均溫度要高於東北西南方向山脊。地熱異常型態顯示LST的高溫區分佈與金山斷層區的位置一致,為了進一步探究兩者的相關性,本文採用希爾伯特-黃轉換(HHT)分析金山斷層區2002至2016年間的MODIS LST時間序列,並討論分析整體平均的經驗模態分解(EEMD,是HHT的主要成分)分量中蘊含的物理過程。其中特別深入研究了C1分量(即EEMD分量1,具有大約一個月的平均週期)中的不規則尖峰可能與TVG地區的地震活動相關聯之推論。最後,為評估TVG的噴發潛力,本文對在菲律賓和印度尼西亞的三座活火山進行了HHT結果的綜合比較分析。
總言, 此研究結果突顯了衛星熱紅外遙測反演估算LST的效果,並採用了HHT數據分析方法來對MODIS LST時間序列進行有效的分析。在宜蘭平原和大屯火山群的研究表明, TIR遙測是探勘和量化地熱和火山地區表面特徵的重要技術與方法,此法與其他地球物理方法相得益彰有效加強了對研究區域的了解,其資料處理結果快速且具有高成本效益。
摘要(英) Abstract
Geothermal energy is an increasingly important component of renewable and green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of monitoring or exploring the geothermal resource are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus monitoring or explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This research aims to apply and integrate Thermal Infrared (TIR) Remote Sensing technology with existing geophysical methods for the geothermal exploration and volcanic monitoring in northern Taiwan.
Two hot potential sites of geothermal energy in Taiwan have been studied in this research. Namely, 1) Ilan Plain of northeastern Taiwan; 2) Tatun Volcanic Group (TVG) of northern Taiwan. Thermal Infrared Remote Sensing technology has been applied for both sites. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the Land Surface Temperature (LST) in Ilan Plain and TVG. Accuracy assessment of satellite derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery from 1999 to 2016 for the verification of the LST anomaly results were performed.
Results from the application of TIR remote sensing in Ilan Plain indicate that thermal anomaly areas appear spatially correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by the field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field.
For the application of TIR remote sensing in TVG, Landsat 7 thermal infrared imagery was used to retrieve the LST and Radiative Heat Flux (RHF), and MODIS LST products were analyzed for the Jinshan fault area in TVG. Detected LST anomaly areas are validated by the field investigation of hot springs and fumaroles. It implies that occurrences of hot springs and fumaroles conform to anomaly areas. The overall temperature in E-W ridge is hotter than the SW-NE ridge in TVG. Thermal anomaly patterns also indicate that distributions of higher LST areas appear correlating with the development of Jinshan fault. Besides, Hilbert Huang Transform (HHT) was adopted for analyzing MODIS LST time series (2002-2016) in Jinshan fault area. Possible related physical processes underneath of Ensemble Empirical Mode Decomposition (EEMD) components which are the key parts of HHT were also discussed. The inference that LST component with average period around a month (EEMD component 1, i.e. C1) has irregular spikes which is possibly associated with earthquakes in TVG has been investigated in detail. Finally, HHT comparison analysis with three active volcanoes in Philippines and Indonesia is performed for attempting to assess the eruption potential of TVG.
The effectiveness of satellite thermal infrared remote sensing in retrieval of LST using Landsat images was demonstrated. And the usefulness of HHT data analysis method on MODIS LST time series was also presented. Despite limited to detecting the surficial and the shallow buried geothermal resources, the work in Ilan Plain and TVG suggests that TIR Remote Sensing is a valuable tool for mapping and quantifying surface features to expand the understanding and enhance the knowledge of the geothermal and volcanic areas with less time-consuming and high cost-efficiency.
關鍵字(中) ★ 宜蘭平原
★ 大屯火山群(TVG)
★ 熱紅外(TIR)遙測
★ Landsat 7 ETM +
★ 地表溫度(LST)
★ 輻射熱通量(RHF)
★ 地熱異常
★ 地熱探勘
★ 中等解析度成像分光輻射計(MODIS)
★ 希爾伯特-黃轉換(HHT)
★ 整體平均的經驗模態分解(EEMD)
關鍵字(英) ★ Ilan Plain
★ Tatun Volcanic Group (TVG)
★ Thermal Infrared (TIR) Remote Sensing
★ Landsat 7 ETM+
★ Land Surface Temperature (LST)
★ Radiative Heat Flux (RHF)
★ Geothermal Anomaly
★ Geothermal Exploration
★ Moderate Resolution Imaging Spectroradiometer (MODIS)
★ Hilbert Huang Transform (HHT)
★ Ensemble Empirical Mode Decomposition (EEMD)
論文目次 Contents
Abstract vii
Dedication ix
Acknowledgements x
List of Tables xiv
List of Figures xv
List of Abbreviations xx
Chapter 1. General Introduction 1
1.1 Statement of Research 3
1.2 Geological Settings for Geothermal Energy in Taiwan 6
1.3 Nationwide Geothermal Energy Development in Taiwan 9
1.4 TIR Remote Sensing Applications in Geothermal Resources 12
Chapter 2. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan 20
Chapter Abstract 20
2.1 Introduction 21
2.1.1 Geothermal Energy of Taiwan 22
2.1.2 Geomagnetic, Gravity, and Magnetotelluric (MT) Survey in Ilan Plain and the Chingshui Area 26
2.2 Data and Method 28
2.2.1 Landsat 7 Products 29
2.2.2 Data Processing 30
2.2.3 Validation of Satellite Derived LST 34
2.2.3.1 Ground-truth Validation from Meteorological Data 34
2.2.3.2 Cross Validation from MODIS LST Products 39
2.3 Results and Discussion 41
2.3.1 Retrieved LSTs in Ilan Plain 41
2.3.2 Multi-temporal Brightness Temperature Imagery for the Verification of the LST Anomaly Results 47
2.3.3 Spatial Correlation between LST Anomaly and Geothermal Occurrences, Faults and Resistivity Profiles 50
2.4 Conclusions and Future Directions 55
Chapter 3. Exploring and Monitoring Geothermal and Volcanic Activity Using Satellite Thermal Infrared Data in Tatun Volcanic Group, Northern Taiwan 58
Chapter Abstract 58
3.1 Introduction 59
3.2 Materials and Methods 64
3.2.1 Landsat 7 Products 64
3.2.2 MODIS LST Products 64
3.2.3 Hilbert-Huang Transform (HHT) 65
3.2.4 Data Processing for Landsat 7 Products 67
3.3 Results 69
3.3.1 LST and RHF distribution of TVG from Landsat 7 ETM+ 69
3.3.2 Topographic Correction of LST and LST Comparison at Hot Spring Sites and the Proximal 1-km Radius Area 71
3.3.3 Cross Validation of Landsat Derived LST with MODIS LST Products 73
3.3.4 MODIS 8-day Average LST Products (2002 to 2016) for Monitoring TVG 75
3.4 Discussion 78
3.4.1 LST Pattern Retrieved from Landsat 7 ETM+ 78
3.4.2 Landsat Multi-temporal Brightness Temperature Imagery for the Verification of the LST Anomaly Results 79
3.4.3 MODIS 8-day Average LST Time Series and Earthquakes 82
3.4.4 HHT Comparison Analysis with Active Volcanoes in Philippines and Indonesia 88
3.5 Conclusions 93
Chapter 4. Summaries 96
4.1 Summary of TIR Remote Sensing in Ilan Plain 96
4.2 Summary of TIR Remote Sensing in Tatun Volcanic Group 97
Chapter 5. Future for TIR Remote Sensing Applications and the Final Note 99
5.1 Applications of TIR Remote Sensing 99
5.2 Substantiation of TIR Remote Sensing Application in Taiwan 100
5.3 Expected Contributions and Suggestions 102
Appendix: Alternative Approaches on Analysis between MODIS LST and Earthquakes in TVG 103
A.1 Correlation between MODIS LST and Earthquakes in TVG-A Segment Approach 103
A.2 Correlation between the Combined Short Period Components C123 of MODIS LST and Earthquakes in TVG 109
A.3 The Segment Analysis on Correlation between the C123 and Earthquakes in TVG 112
References 116
參考文獻 References
1. Kuenzer, C.; Dech, S. Thermal infrared remote sensing. In Sensors, methods, applications, remote sensing and digital image processing, Springer: 2013; Vol. 17.
2. Xiong, X.; Wu, A.; Wenny, B.N.; Madhavan, S.; Wang, Z.; Li, Y.; Chen, N.; Barnes, W.L.; Salomonson, V.V. Terra and aqua modis thermal emissive bands on-orbit calibration and performance. IEEE Transactions on Geoscience and Remote Sensing 2015, 53, 5709-5721.
3. USGS. Landsat missions timeline. U.S. Geological Survey (USGS). [Online]. Available: https://landsat.usgs.gov/landsat-missions-timeline Accessed: 2017-03-23.
4. Chan, H.-P.; Chang, C.-P.; Dao, P.D. Geothermal anomaly mapping using landsat etm+ data in ilan plain, northeastern taiwan. Pure and Applied Geophysics 2017.
5. Tsanyao, F. In Introduction to the geothermal energy program in taiwan, Proceedings World Geothermal Congress 2015, 2015; pp 19-24.
6. Lai, Y.-M.; Lin, Y.-J.; Song, S.-R.; Tsai, Y.-W.; Hsieh, Y.-C.; Lo, W. Topography and volcanology of the huangtsuishan volcano subgroup, northern taiwan. Terrestrial, Atmospheric & Oceanic Sciences 2010, 21.
7. Ho, C. A synthesis of the geologic evolution of taiwan. Tectonophysics 1986, 125, 1-16.
8. Song, S.; Yang, T.; Yeh, Y.; Tsao, S.; Lo, H. The tatun volcano group is active or extinct? Jour. Geol. Soc. China 2000, 521-534.
9. Liu, C.-M.; Song, S.-R.; Kuo, C.-H. Silica geothermometry applications in the taiwan orogenic belt. Terrestrial, Atmospheric & Oceanic Sciences 2015, 26.
10. Song, S.-R. In The geothermal potential, current and opportunity in taiwan, EGU General Assembly Conference Abstracts, 2016; p 3376.
11. Nep-ii program office. National energy program phase ii (nep-ii). [Online]. Available: http://www.nepii.tw/language/en/home-en/ Accessed: 2017-03-17.
12. U.S. Government printing office, U.S. Geological survey professional paper, investigations of principles and processes. 1963, Page A137.
13. Lee, K. Analysis of thermal infrared imagery of the black rock desert geothermal area. Q. Colo. Sch. Mines;(United States) 1978, 73.
14. Biru, G. The application of remote sensing through twenty years from aerial colour infrared photograph interpretation to aerospace thermal infrared data analysis [j]. Progress in Geophysics 1999, 3, 015.
15. Prakash, A.; Sastry, R.; Gupta, R.; Saraf, A. Estimating the depth of buried hot features from thermal ir remote sensing data: A conceptual approach. International Journal of Remote Sensing 1995, 16, 2503-2510.
16. Hellman, M.J.; Ramsey, M.S. Analysis of hot springs and associated deposits in yellowstone national park using aster and aviris remote sensing. Journal of Volcanology and Geothermal Research 2004, 135, 195-219.
17. Pieri, D.; Abrams, M. Aster watches the world′s volcanoes: A new paradigm for volcanological observations from orbit. Journal of Volcanology and Geothermal Research 2004, 135, 13-28.
18. Ramsey, M.; Dehn, J. Spaceborne observations of the 2000 bezymianny, kamchatka eruption: The integration of high-resolution aster data into near real-time monitoring using avhrr. Journal of Volcanology and Geothermal Research 2004, 135, 127-146.
19. Donegan, S.J.; Flynn, L.P. Comparison of the response of the landsat 7 enhanced thematic mapper plus and the earth observing-1 advanced land imager over active lava flows. Journal of Volcanology and Geothermal Research 2004, 135, 105-126.
20. Vaughan, R.G.; Hook, S.J.; Calvin, W.M.; Taranik, J.V. Surface mineral mapping at steamboat springs, nevada, USA, with multi-wavelength thermal infrared images. Remote Sensing of Environment 2005, 99, 140-158.
21. Coolbaugh, M.; Kratt, C.; Fallacaro, A.; Calvin, W.; Taranik, J. Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (aster) thermal infrared images at bradys hot springs, nevada, USA. Remote Sensing of Environment 2007, 106, 350-359.
22. Watson, F.G.; Lockwood, R.E.; Newman, W.B.; Anderson, T.N.; Garrott, R.A. Development and comparison of landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sensing of Environment 2008, 112, 471-481.
23. Vaughan, R.G.; Keszthelyi, L.P.; Lowenstern, J.B.; Jaworowski, C.; Heasler, H. Use of aster and modis thermal infrared data to quantify heat flow and hydrothermal change at yellowstone national park. Journal of Volcanology and Geothermal Research 2012, 233, 72-89.
24. Gaudin, D.; Beauducel, F.; Allemand, P.; Delacourt, C.; Finizola, A. Heat flux measurement from thermal infrared imagery in low-flux fumarolic zones: Example of the ty fault (la soufrière de guadeloupe). Journal of Volcanology and Geothermal Research 2013, 267, 47-56.
25. Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat losses using landsat etm+ thermal infrared data: A case study in unzen geothermal field, kyushu, japan. Pure and Applied Geophysics 2013, 170, 2263-2271.
26. Mia, M.B.; Nishijima, J.; Fujimitsu, Y. Exploration and monitoring geothermal activity using landsat etm+ images: A case study at aso volcanic area in japan. Journal of Volcanology and Geothermal Research 2014, 275, 14-21.
27. Tian, B.; Wang, L.; Kashiwaya, K.; Koike, K. Combination of well-logging temperature and thermal remote sensing for characterization of geothermal resources in hokkaido, northern japan. Remote Sensing 2015, 7, 2647-2667.
28. Eskandari, A.; De Rosa, R.; Amini, S. Remote sensing of damavand volcano (iran) using landsat imagery: Implications for the volcano dynamics. Journal of Volcanology and Geothermal Research 2015, 306, 41-57.
29. Qin, Q.; Zhang, N.; Nan, P.; Chai, L. Geothermal area detection using landsat etm+ thermal infrared data and its mechanistic analysis—a case study in tengchong, china. International Journal of Applied Earth Observation and Geoinformation 2011, 13, 552-559.
30. Gutiérrez, F.J.; Lemus, M.; Parada, M.A.; Benavente, O.M.; Aguilera, F.A. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the andes of central chile. Journal of Volcanology and Geothermal Research 2012, 237-238, 69-80.
31. Wu, W.; Zou, L.; Shen, X.; Lu, S.; Su, N.; Kong, F.; Dong, Y. Thermal infrared remote-sensing detection of thermal information associated with faults: A case study in western sichuan basin, china. Journal of Asian Earth Sciences 2012, 43, 110-117.
32. Chang, T.-Y.; Liou, Y.A. Using landsat data-derived air temperature to quantify the magnitude of urban heat island effect. Journal of Photogrammetry and Remote Sensing 2005, 10, 385-392.
33. Chang, T.-Y.; Liou, Y.-A.; Lin, C.-Y.; Liu, S.-C.; Wang, Y.-C. Evaluation of surface heat fluxes in chiayi plain of taiwan by remotely sensed data. International Journal of Remote Sensing 2010, 31, 3885-3898.
34. Chien, T.-C.; Liou, Y.-A.; Chang, T.-Y. Using remote sensing to estimate evapotranspiration of paddy field. Journal of Photogrammetry and Remote Sensing 2008, 13, 1-18.
35. Akhoondzadeh, M. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 august 2012 varzeghan, iran, earthquake (m = 6.4). Natural Hazards and Earth System Science 2013, 13, 1077-1083.
36. Kruse, F.A. Mapping surface mineralogy using imaging spectrometry. Geomorphology 2012, 137, 41-56.
37. Kuenzer, C.; Zhang, J.; Li, J.; Voigt, S.; Mehl, H.; Wagner, W. Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing 2007, 28, 4561-4585.
38. Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat flux using landsat tm/etm+ thermal infrared data—a case study at karapiti (‘craters of the moon’) thermal area, new zealand. Journal of Volcanology and Geothermal research 2012, 235, 1-10.
39. Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat losses using landsat etm + thermal infrared data: A case study in unzen geothermal field, kyushu, japan. Pure and Applied Geophysics 2013, 170, 2263-2271.
40. Oguro, Y.; Ito, S.; Tsuchiya, K. Comparisons of brightness temperatures of landsat-7/etm+ and terra/modis around hotien oasis in the taklimakan desert. Applied and Environmental Soil Science 2011, 2011, 1-11.
41. Qin, Z.; Karnieli, A.; Berliner, P. Remote sensing analysis of the land surface temperature anomaly in the sand-dune region across the israel-egypt border. International Journal of Remote Sensing 2002, 23, 3991-4018.
42. Reath, K.A.; Ramsey, M.S. Exploration of geothermal systems using hyperspectral thermal infrared remote sensing. Journal of Volcanology and Geothermal Research 2013, 265, 27-38.
43. Shaw, J.A.; Powell, S.L.; Jewett, J.T.; Custer, S.G.; Lawrence, R.L.; Savage, S.L. Review of alternative methods for estimating terrestrial emittance and geothermal heat flux for yellowstone national park using landsat imagery. GIScience & Remote Sensing 2010, 47, 460-479.
44. NSC. National science and technology program-energy summary report 2013 (in chinese). National Science Council, Taiwan 2013.
45. Ho, H.-C.; Chen, M.-M. Explanatory text of the geologic map of taiwan. Central Geological Survey, MOEA, Taiwan 2000.
46. Chiang, H.T.; Shyu, C.T.; Chang, H.I. A study of shallow geothermal resources in ilan plain, northeastern taiwan. CIMME Annual Convention, October 26th, 2007, Kaohsiung, Taiwan (in Chinese) 2007.
47. Chen, H.; Liu, C.-M. The development of taiwan geothermal potential (in chinese). Journal of Taiwan Energy 2013, Volume 1, pp. 85-103.
48. NSC. National science and technology program-energy, geothermal power axis round-up report 2013 (in chinese). National Science Council, Taiwan 2013.
49. Tong, L.-T.; Ouyang, S.; Guo, T.-R.; Lee, C.-R.; Hu, K.-H.; Lee, C.-L.; Wang, C.-J. Insight into the geothermal structure in chingshui, ilan, taiwan. Terrestrial, Atmospheric and Oceanic Sciences 2008, 19, 413.
50. NASA. Landsat processing details. NASA’s Goddard Space Flight Center. [Online]. https://landsat.usgs.gov/Landsat_Processing_Details.php Accessed 15 June 2017. 2015.
51. NASA. Frequently asked questions about the landsat missions. NASA’s Goddard Space Flight Center. [Online]. http://landsat.usgs.gov/band_designations_landsat_satellites.php. Accessed 27 Mar 2014. 2013.
52. NASA. Landsat 7 science data users handbook-data products NASA’s Goddard Space Flight Center. [Online]. Available: https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat7_Handbook.pdf. Accessed 27 Mar 2014. 1998.
53. Adler-Golden, S.; Berk, A.; Bernstein, L.; Richtsmeier, S.; Acharya, P.; Matthew, M.; Anderson, G.; Allred, C.; Jeong, L.; Chetwynd, J. In Flaash, a modtran4 atmospheric correction package for hyperspectral data retrievals and simulations, Proc. 7th Ann. JPL Airborne Earth Science Workshop, 1998; pp 9-14.
54. Barsi, J.; Barker, J.L.; Schott, J.R. In An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument, Geoscience and Remote Sensing Symposium, 2003. IGARSS′03. Proceedings. 2003 IEEE International, 2003; IEEE: pp 3014-3016.
55. Warner, T.; Chen, X. Normalization of landsat thermal imagery for the effects of solar heating and topography. International Journal of Remote Sensing 2001, 22, 773-788.
56. Sobrino, J.; Raissouni, N.; Li, Z.-L. A comparative study of land surface emissivity retrieval from noaa data. Remote Sensing of Environment 2001, 75, 256-266.
57. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different vnir and tir sensors. IEEE Transactions on Geoscience and Remote Sensing 2008, 46, 316-327.
58. Carlson, T.N.; Ripley, D.A. On the relation between ndvi, fractional vegetation cover, and leaf area index. Remote sensing of Environment 1997, 62, 241-252.
59. Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology 1995, 34, 745-756.
60. Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote sensing of environment 1994, 50, 1-17.
61. Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment 1982, 12, 313-329.
62. Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R. High-resolution thermal inertia mapping from the mars global surveyor thermal emission spectrometer. Icarus 2000, 148, 437-455.
63. Price, J.C. Thermal inertia mapping: A new view of the earth. Journal of Geophysical Research 1977, 82, 2582-2590.
64. Quattrochi, D.A.; Luvall, J.C. Thermal remote sensing in land surface processing. CRC Press: 2004; p 18.
65. Schmugge, T.; Hook, S.; Coll, C. Recovering surface temperature and emissivity from thermal infrared multispectral data. Remote Sensing of Environment 1998, 65, 121-131.
66. Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.; Cosh, M.H.; Bindlish, R. Deriving land surface temperature from landsat 5 and 7 during smex02/smacex. Remote sensing of environment 2004, 92, 521-534.
67. Coll, C.; Wan, Z.; Galve, J.M. Temperature‐based and radiance‐based validations of the v5 modis land surface temperature product. Journal of Geophysical Research: Atmospheres 2009, 114.
68. Chiang, S.; Lin, J.; Chang, C.R.; Wu, T. In A preliminary study of the chingshui geothermal area, ilan, taiwan, Proceeding of the 5th Geothermal Reservoir Engineering Workshop, Stanford University, Stanford, California, 1979; pp 249-254.
69. Chiang, H.T.; Shyu, C.T.; Chang, H.I. A study of shallow geothermal resources in ilan plain, northeastern taiwan. CIMME Annual Convention, October 26th, 2007, Kaohsiung, Taiwan 2007.
70. Huang, H.H.; Shyu, J.B.H.; Wu, Y.M.; Chang, C.H.; Chen, Y.G. Seismotectonics of northeastern taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth 2012, 117.
71. Liu, C. The ilan plain and the southwestward extending okinawa trough. J. Geol. Soc. China 1995, 38, 183-193.
72. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from tm imagery. International Journal of Remote Sensing 2003, 24, 583-594.
73. Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using landsat 8 oli imagery. GIScience & remote sensing 2014, 51, 445-467.
74. Lu, D.; Moran, E.; Hetrick, S. Detection of impervious surface change with multitemporal landsat images in an urban–rural frontier. ISPRS Journal of Photogrammetry and Remote Sensing 2011, 66, 298-306.
75. Paulose, A.; Sreeraj, M.; Harikrishnan, V. In Impervious surface detection from multispectral images using surf, International Conference on Internet of Vehicles, 2014; Springer: pp 237-246.
76. Kotarba, A.Z.; Aleksandrowicz, S. Impervious surface detection with nighttime photography from the international space station. Remote Sensing of Environment 2016, 176, 295-307.
77. Chang, P.-Y.; Lo, W.; Song, S.-R.; Ho, K.-R.; Wu, C.-S.; Chen, C.-S.; Lai, Y.-C.; Chen, H.-F.; Lu, H.-Y. Evaluating the chingshui geothermal reservoir in northeast taiwan with a 3d integrated geophysical visualization model. Geothermics 2014, 50, 91-100.
78. Ho, G.-R.; Chang, P.-Y.; Lo, W.; Liu, C.-M.; Song, S.-R. New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the chingshui-sanshing-hanchi area of southwestern ilan county, ne taiwan. Terrestrial, Atmospheric & Oceanic Sciences 2014, 25.
79. Kuenzer, C.; Dech, S. Thermal infrared remote sensing: Sensors, methods, applications. Springer: 2013; p 453-455.
80. Song, S.-R.; Chen, T.-M.; Tsao, S.; Chen, H.-F.; Liu, H.-C. Lahars in and around the taipei basin: Implications for the activity of the shanchiao fault. Journal of Asian Earth Sciences 2007, 31, 277-286.
81. Yang, T.; Sano, Y.; Song, S. 3he/4he ratios of fumaroles and bubbling gases of hot springs in tatun volcano group, north taiwan. Nuovo Cimento-societa Italiana Di Fisica Sezione C 1999, 22, 281-286.
82. Belousov, A.; Belousova, M.; Chen, C.-H.; Zellmer, G.F. Deposits, character and timing of recent eruptions and gravitational collapses in tatun volcanic group, northern taiwan: Hazard-related issues. Journal of Volcanology and Geothermal Research 2010, 191, 205-221.
83. Tsai, Y.-W.; Song, S.-R.; Chen, H.-F.; Li, S.-F.; Lo, C.-H.; Lo, W.; Tsao, S. Volcanic stratigraphy and potential hazards of the chihsingshan volcano subgroup in the tatun volcano group, northern taiwan. Terrestrial, Atmospheric & Oceanic Sciences 2010, 21.
84. Kim, K.; Chang, C.; Ma, K.; Chiu, J.; Chen, K. Modern seismic observations in the tatun volcano region of northern taiwan: Seismic/volcanic hazard adjacent to the taipei metropolitan area. Terrestrial Atmospheric and Oceanic Sciences 2005, 16, 579.
85. Konstantinou, K.I.; Lin, C.-H.; Liang, W.-T. Seismicity characteristics of a potentially active quaternary volcano: The tatun volcano group, northern taiwan. Journal of Volcanology and Geothermal Research 2007, 160, 300-318.
86. Konstantinou, K.; Lin, C.; Liang, W.; Chan, Y. Seismogenic stress field beneath the tatun volcano group, northern taiwan. Journal of Volcanology and Geothermal Research 2009, 187, 261-271.
87. Konstantinou, K. Potential for future eruptive activity in taiwan and vulnerability to volcanic hazards. Natural Hazards 2015, 75, 2653-2671.
88. Yang, C.; Liu, J.; Huank, M.; Chen, W. Dtm for mapping the volcanic landforms of tatun volcano group in northern taiwan. Journal of Photogrammetry and Remote Sensing 2004, 9, 1-8.
89. Lin, C.H. Taiwan volcano observatory at tatun (tvo) (in chinese). In Technical report of Yangminshan National Park Administration, 2009; p 109.
90. Wan, Z. Collection-5 modis land surface temperature products users’ guide. ICESS, University of California, Santa Barbara 2007.
91. Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the modis global land surface temperature. International Journal of Remote Sensing 2004, 25, 261-274.
92. Huang, N.E.; Wu, Z. A review on hilbert‐huang transform: Method and its applications to geophysical studies. Reviews of Geophysics 2008, 46.
93. Wang, Y.-H.; Yeh, C.-H.; Young, H.-W.V.; Hu, K.; Lo, M.-T. On the computational complexity of the empirical mode decomposition algorithm. Physica A: Statistical Mechanics and its Applications 2014, 400, 159-167.
94. Huang, N. The empirical mode decomposition method and the hilbert spectrum for non-stationary time series. Proc. Roy. Soc. London, 45AA 1998, 703-775.
95. Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The hilbert spectrum. Annual review of fluid mechanics 1999, 31, 417-457.
96. Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoliak, B.V.; Chen, X. On the time-varying trend in global-mean surface temperature. Climate dynamics 2011, 37, 759.
97. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in adaptive data analysis 2009, 1, 1-41.
98. Bromley, C.J.; van Manen, S.M.; Mannington, W. In Heat flux from steaming ground: Reducing uncertainties, Proceedings, 36th Workshop on Geothermal reservoir engineering, Stanford University, California, USA, SGP-TR-191, 2011.
99. Chen, S.Y.; Liu, P.X.; Liu, L.Q.; Ma, J.; Chen, G.Q. Wavelet analysis of thermal infrared radiation of land surface and its implication in the study of current tectonic activities. Chinese Journal of Geophysics 2006, 49, 717-723.
100. Ma, J.; Wang, Y.; Chen, S.; Liu, P.; Liu, L. Insights into correlation between satellite infrared information and fault activities. Progress in Natural Science 2006, 16, 394-402.
101. Chen, S.-Y.; Jin, M.; Pei-Xun, L.; Li-Qiang, L.; Xiao-Yan, H. Exploring co-seismic thermal response of wenchuan earthquake by using land surface temperatures of terra and aqua satellites. Chinese Journal of Geophysics 2013, 56, 3788-3799.
102. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment 2002, 79, 213-224.
103. Gutenberg, B. The energy of earthquakes. Quarterly Journal of the Geological Society 1956, 112, 1-14.
104. Lin, C.-H. Evidence for a magma reservoir beneath the taipei metropolis of taiwan from both s-wave shadows and p-wave delays. Scientific Reports 2016, 6.
105. Tronin, A. Remote sensing and earthquakes: A review. Physics and Chemistry of the Earth, parts A/B/C 2006, 31, 138-142.
106. Gupta, R.P. Remote sensing geology. Springer Science & Business Media: 2013.
107. Prakash, A. Thermal remote sensing: Concepts, issues and applications. International Archives of Photogrammetry and Remote Sensing 2000, 33, 239-243.
108. Sobrino, J.A.; Del Frate, F.; Drusch, M.; Jiménez-Muñoz, J.C.; Manunta, P.; Regan, A. Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 2963-2972.
指導教授 張中白 郭陳澔(Chung-Pai Chang Hao Kuo-Chen) 審核日期 2017-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明