博碩士論文 104222031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.221.129.145
姓名 陳柏瀚(Bo-Han Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測
(Proximity-induced superconductivity in noncontinuous Pb grains/single layer MoS2 device)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 二維電子氣體中量子點接觸 與量子點製作及量測★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為
★ 單一超導量子位元控制與狀態讀取★ 超導量子干涉元件製作
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究製作不連續鉛顆粒/單層二硫化鉬元件,觀察不連續超導體/半導體界面的超導鄰近效應(Proximity-induced superconductivity)。超導體中超導能隙內的主要電荷載子為古柏電子對(Cooper pair),在不連續超導體/非超導體界面上,若古柏電子對從超導體進入非超導體,且傳輸於非超導體上沒有因散射(Scattering)而失去同調性(Coherence),當整個系統達到相位同調(Phase coherence)時可觀察到整個系統轉變為超導態。
鍍鉛於單層二硫化鉬、二氧化矽表面且鍍膜厚度較薄時,由於鉛的抗濕潤性(Dewetting)使得鉛會聚集成不連續顆粒(Grains),當鍍膜厚度越厚,鉛顆粒間距越小,且相較於二氧化矽表面,鉛顆粒在二硫化鉬表面濕潤性(Wetting)較佳,因此在鍍膜厚度為50nm的情況下,鉛於二硫化鉬表面形成薄膜,而在二氧化矽表面則仍是不連續顆粒。
本研究先製作鉛膜/單層二硫化鉬元件,並量測鉛膜的臨界溫度(Critical temperature,Tc)、臨界電流(Critical current,Ic)、臨界磁場(Critical field,Hc)等超導態特性。對不連續鉛顆粒/單層二硫化鉬元件藉由鍍上不同厚度且不連續之鉛顆粒,以及調控閘極電壓改變二硫化鉬的載子濃度,期望能在此類型元件上觀察到超導鄰近效應。本研究中表面覆有高分子電解質閘極(Polymer electrolyte gate)之不連續鉛顆粒/二硫化鉬元件於降溫過程電阻值持續下降,但此類元件大部分在量測系統降至最低溫度前元件燒毀,內文分析元件燒毀可能原因並給予改善建議。總結實驗結果觀察到50nm鉛膜/二硫化鉬元件之超導態特性,而不連續鉛顆粒/二硫化鉬元件大部分於降溫過程中燒毀,因此在本研究不連續鉛顆粒/二硫化鉬元件上尚未觀察到超導鄰近效應。
摘要(英) We fabricated Lead (Pb) clusters/single-layer molybdenum disulphide (MoS2) devices, and mainly studied proximity-induced superconductivity in the system. Electrons in a superconductor are paired into Cooper pairs in superconducting state. In a non-superconducting material decorated with noncontinous superconductors system, Cooper pairs may diffuse into non-superconducting material. If Cooper pairs transport in non-superconducting material without losing their coherence, we can observe entire system turning into superconducting state.
Pb’s dewetting produces self-assembled noncontinous grains on the single-layer MoS2 surface. The spacing between Pb grains decreases with evaporating thicker Pb on the single- layer MoS2 surface. The carrier concentration of single layer MoS2 is tuable by applying gate voltage on devices. By adjusting carrier concentration of MoS2, thickness and spacing of Pb grains, we expect to observe proximity-induced superconductivity in Pb clusters/single layer MoS2 devices.
In our experiment, we measured critical temperature、critical current and critical field of Pb film/ single layer MoS2 devices first. By applying voltage on ploymer electrolyte gate, we tuned the carrier concentration of single layer MoS2 and effectively reduced resistance of the devices. However, most of Pb clusters/ single layer MoS2 devices with ploymer electrolyte gate were burned out during cooling down process. Therefore, we have not observed proximity-induced superconductivity in Pb clusters/single layer MoS2 devices yet. We only observed superconductivity in 50nm Pb film/ single layer MoS2 devices.
關鍵字(中) ★ 二硫化鉬
★ 超導鄰近效應
關鍵字(英) ★ MoS2
★ Superconducting Proximity effect
論文目次 摘要.IV
Abstract.V
目錄.VI
圖目錄 . VII
Chapter 1. 背景介紹與文獻回顧.1
1-1 研究目標 1
1-2 超導體2
1-3 超導鄰近效應.4
1-4 過渡金屬硫族化合物(TMDc) 5
1-5 薄膜超導鄰近效應與超薄鉛膜文獻回顧 6
Chapter 2. 元件製程與實驗儀器介紹 .13
2-1 元件設計與材料簡介.13
2-2 元件製程 15
(i) 電子束微影流程.15
(ii) 電子束微影(E-beam lithography) .16
(iii) 電子槍蒸鍍系統(E-gun evaporator) .18
(iv) 熱蒸鍍系統(Thermal evporator) .19
(v) 高分子電解質閘極(Polymer electrolyte gate).20
2-3 元件量測載台.21
(i) 壓針載台 21
(ii) 打線載台 22
2-4 量測系統 23
(i) 低溫腔體 23
(ii) 電阻式溫度計.25
Chapter 3. 實驗結果與討論.26
3-1 50nm 連續鉛膜電性量測(元件 A、B).28
3-2 30nm 不連續鉛顆粒/二硫化鉬元件電性量測(元件 C、D).32
3-3 15nm 不連續鉛顆粒/二硫化鉬元件電性量測(元件 E)37
3-4 於降溫過程燒毀元件之電性量測(元件 F、G、H、I)41
3-5 元件於降溫過程燒毀原因探討45
Chapter 4. 結論與未來展望.46
參考文獻 [1]Han, Z., et al., Collapse of superconductivity in a hybrid tin-graphene Josephson junction array. Nat Phys, 2014. 10(5): p. 380-386.
[2]Eley, S., et al., Approaching zero-temperature metallic states in mesoscopic superconductor-normal-superconductor arrays. Nat Phys, 2012. 8(1): p. 59-62.
[3]Datta, S., Electronic Transport in Mesoscopic Systems. 1995.
[4]Kes, D.v.D.a.P., Onnes,The discovery of superconductivity. Physics Today, 2010.
[5]Meissner, W.a.R.O., Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 1933. 21(44).
[6]KITTEL, C., Introduction to Solid State Physics. 2005.
[7]張裕桓, 超導物理. 1997.
[8]Cooper, L.N., Bound Electron Pairs in a Degenerate Fermi Gas. Phys. Rev. , 1956. 104(4): p. 1189.
[9]Neil W.Ashcroft , N.D.M., Solid State Physics. 1976.
[10]Clack, J., The proximity effect vetween superconducting and normal thin films in zero field. . J. Phys. Colloques, 1968. 29: p. C2-3-C2-16.
[11]Mutsuko Hatano, T.N., Ushio Kawabe, Experiments of the superconducting proximity effect between superconductor and semiconductor. Appl. Phys. Lett., 1987. 50(52).
[12]RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
[13]Allain, A., Z. Han, and V. Bouchiat, Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids. Nat Mater, 2012. 11(7): p. 590-594.
[14]Stepniak, A., Atomic layer superconductivity. Surface and Interface Analysis, 2014. 46(12-13).
[15]Lee, Y., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
[16]Ming-Wei Lin, Lezhang Liu, and Q. Lan, Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D: Appl. Phys., 2012. 45.
[17]BlueFors, BF‐LD250 CRYOGEN‐FREE DILUTION REFRIGERATOR SYSTEM User manual. 2011.
[18]ADIRLI, E.C., Dependence of Electrical Resistivity on Temperature and Sn Content in Pb-Sn Solders. Journal of Electronic Materials. 40(2): p. 195-200.
[19]W.-H. Li, C.C.Y., F. C. Tsao, and K. C. Lee, Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. PHYSICAL REVIEW B, 2003. 68(18).
[20]B. L. Altshuler., et al., Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. PhysRevB, 1980. 22(11).
指導教授 陳永富(Yu-Fu Chen) 審核日期 2017-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明