博碩士論文 103581602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:13.58.244.216
姓名 宇文鋒(VU VAN PHONG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於未知輸入法之不確定非線性系統的觀測器與控制器合成
(Unknown Input Method Based Observer and Controller Synthesis for Uncertain Nonlinear Systems)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 非線性系統觀察器和控制器的設計被研究人員認為是一個巨大挑戰。一般而言,一個非線性系統擁有複雜的組成,觀察器和控制器設計可能會很困難。因此,將非線性系統轉換為其他模型是必要的。在本研究中,非線性系統被轉換成四個模型,分別是離散時間不確定性T-S模糊模型,不確定性多項式模型,不確定性多項式T-S模糊模型和具有擾動的連續時間T-S模糊系統。然後將觀察器和控制器合成到這些系統模型用於代替原來的非線性系統。本文中觀察器被合成用於對離散時間不確定性T-S模糊系統、不確定性多項式T-S模糊系統研究;而針對具有擾動的連續T-S模糊系統和不確定性多項式系統,設計了基於觀察器的控制器。值得注意到的是隨著不確定性和擾動的存在,非線性系統的觀察者和控制器的合成變得更加困難。因為不確定性/擾動總是使估計誤差和狀態無法漸近收斂為零。
在這篇論文中,我們的貢獻被提出在四個主要章節。在第3章,一種基於未知輸入的新方法被提出,合成的觀察器用於去估計離散時間不確定性T-S模糊系統的不可測狀態變數。這種新方法不僅可以消除不確定性的影響,還可以使估計狀態在未知不確定性上限的情況下漸近地接近真實狀態。此外,前件部變數依懶和獨立與不可測量的狀態變數被用於研究離散時間不確定性T-S模糊系統。此外,非常用的二次項Lyapunov函數被用來使觀察器設計的條件更加寬鬆。在第4章,一個新方法被提出來用於設計不確定性多項式T-S模糊系統的觀察器,不確定性上限不會被提前給出。一種新的多項式觀察器形式被提出,在沒有設計控制器和不知道不確定性上限的情況下去估計非可測狀態,並完全地消除不確定性的影響。此外,利用非常用的Lyapunov函數和SOS技術,推導出了觀察器合成的充分條件。
在第5章中介紹了一種用於合成基於觀察器的不確定性多項式系統控制器的新方法。不確定性多項式系統被轉化為具有擾動的多項式系統,然後,為該系統設計了基於觀察器的控制器。基於未知輸入的新的控制過程被提出去估計狀態和穩定系統當在不確定性上限和所有或者某些狀態的上限是未知的情況下。另外,一個新的觀察器架構被合成去同時地估計不可測狀態和擾動。在第6章,基於觀察器的控制器被合成到有擾動出現的連續T-S模糊系統。擾動的種類極大地擴大了,因為它不需要滿足嚴格的約束條件,如有界的、有限的導數等於零或由外生模型生成。一種新的狀態和擾動觀察器被提出用於估計不可測狀態和擾動,該控制器與狀態和擾動觀察器結合在一起是為了消除擾動的影響穩定系統。
總之,本文提出了一些方法為不確定性非線性系統合成觀察器和控制器。根據Lyapuov理論,依據LMIs(線性矩陣不等式)和SOS(平方和),在Matlab中用LMIs工具和SOS工具來解決問題,推導出觀察器和控制器的設計條件。最後舉例說明了所提出的方法的有效性和優越性
摘要(英) Observer and controller design for nonlinear systems is categorized as a great challenge for researchers. In general, because a nonlinear system may have a complex form, observer and controller design may be difficult. Therefore, transforming the nonlinear system into other models is always necessary. In this study, the nonlinear system is transformed into four models which are the discrete time uncertain T-S fuzzy model, uncertain polynomial model, uncertain polynomial T-S fuzzy model and continuous time T-S fuzzy system with the disturbance, then the observer and controller are synthesized for these system models instead of the original nonlinear systems. Particularly, in this dissertation, the observer is synthesized for the discrete time uncertain T-S fuzzy systems, uncertain polynomial T-S fuzzy system; and the observer-based controller is designed for the continuous T-S fuzzy systems with disturbances and the uncertain polynomial systems. It is noted that with the existing of the uncertainties and disturbances, synthesizing the observer and controller for the nonlinear systems becomes much more difficult. Because the uncertainties/disturbances always make the estimation errors and the states be unable to converge zero asymptotically.
In this dissertation, the contributions are presented in four main chapters. In Chapter 3, a new methodology based on the unknown input method is proposed for synthesizing the observer to estimate the un-measurable state variables of the discrete time uncertain T-S fuzzy system. This new approach allows us not only eliminate the effects of uncertainties but also make the estimated states approach to real states asymptotically without knowing the upper bounds of the uncertainties. Moreover, both premise variables are dependent and independent on the unmeasured state variables are investigated for the discrete time uncertain T-S fuzzy system. Additionally, the non-common quadratic Lyapunov function is employed to make the conditions for the observer design be more relaxed. In Chapter 4, a new approach to design the observer for uncertain polynomial T-S fuzzy system is proposed. The upper bounds of the uncertainties are not given in advance. A novel polynomial observer form is proposed to estimate the un-measurable states and eliminate completely the influences of the uncertainties without designing a controller and knowing the upper bounds of the uncertainties. Moreover, with the aids of the non-common Lyapunov function and SOS technique, the sufficient conditions for observer synthesis are derived.
Furthermore, new methodology to synthesize the observer-based controller for the uncertain polynomial system is established in Chapter 5. The uncertain polynomial system is transformed into the polynomial system with the disturbance then the observer-based controller is designed for this system. The novel control process based on the unknown input method is proposed to estimate states and stabilize the system in which the upper bounds of uncertainties and all/some states are unknown. Besides, a new framework of the observer is synthesized to estimate the un-measurable states and the disturbances simultaneously. In Chapter 6, the observer-based controller is synthesized to the continuous T-S fuzzy system with the presence of the disturbance. The class of the disturbance is significantly enlarged because it does not need to satisfy the strict constraints such as bounded, finite derivative is equal to zero or generated from the exogenous model. A new form of the state and disturbance observer is proposed to estimate the unmeasurable states and disturbance simultaneously. The controller incorporating with the state and disturbance observer is designed to counteract to the impacts of the disturbance and stabilize the system.
In conclusion, this dissertation proposed several methods to synthesize observer and controller for the uncertain nonlinear system. On the basis of Lyapuov theory, the conditions of design observer and controller are derived in term of LMIs (Linear Matrix Inequalities) and SOS (Sum of Squares) which can be solved by LMIs tool and SOS tools in Matlab. Finally, several examples are shown to illustrate the effectiveness and advantages of the proposed methods.
關鍵字(中) ★ 非線性系統
★ 不確定性
★ 未知輸入
★ 觀察器設計
★ 基於觀察器的控制器設計
★ 擾動觀察器
★ 多項式系統
★ LMIs
★ SOS
關鍵字(英) ★ Nonlinear system
★ uncertainties
★ unknown input
★ observer design
★ observer-based controller design
★ disturbance observer
★ polynomial system
★ LMIs
★ SOS
論文目次 摘要 I
Abstract III
Acknowledgment V
Table of Contents VI
Acronyms VIII
Nomenclature IX
List of Figures X
Part I:Literature Reviews and Modelling System 1
Chapter 1: Introduction 2
1.1 Background and Motivation 2
1.2 Outline of the Dissertation 9
Chapter 2: Nonlinear Systems Description and Modelling 11
2.1 Modelling Nonlinear Systems 11
2.1.1 Continuous-Time T-S Fuzzy System 12
2.1.2 Discrete-Time T-S Fuzzy Systems 13
2.1.3 Polynomial T-S Fuzzy Systems 14
2.1.4 Polynomial System 16
2.2 Preliminaries 17
Part II: Observer Synthesis 20
Chapter 3: Unknown Input Method Based Observer Synthesis for Discrete-Time Uncertain T-S Fuzzy Systems 21
3.1 Problem Statements 21
3.2 Observer Synthesis 22
3.2.1) Observer synthesis with measurable premise variables 24
3.2.2) Observer synthesis with estimated premise variables 31
3.3 Illustrative Examples 38
3.4 Summary 47
Chapter 4: Unknown Input Method Based Observer Synthesis for Uncertain Polynomial T-S Fuzzy Systems 49
4.1 Problem Statement 49
4.2 Observer Synthesis 50
4.3 Illustrative examples 61
4.4 Summary 70
Part III: Observer-Based Controller Synthesis 71
Chapter 5: Observer-Based Controller Synthesis for Uncertain Polynomial System 72
5.1 Problem Statements 72
5.2 Observer-Based Controller Synthesis 73
5.3 Illustrative examples 86
5.4 Summary 96
Chapter 6: Observer-Based Controller Synthesis for T-S Fuzzy System with the Enlarged Class of Disturbances 98
6.1 Problem Statements 98
6.2 State and Disturbance Observer Synthesis 99
6.3 Observer-Based Controller Synthesis 106
6.4 Illustrative Examples 116
6.5 Summary 127
Part IV: Conclusions 129
Chapter 7: Conclusion and Future Works 130
7.1 Conclusion 130
7.2 Future Works 131
Bibliography 132
Publications 144
參考文獻 [1] M. Vidyasagar, Nonlinear systems analysis, Englewood OHTs. New Jersey 07632: PRENTICE HALL, 1993.
[2] H. K. Khalil, Nonlinear system, Upper Saddle River, NJ 0758: Prentice Hall, 2002.
[3] G. Conte, C. H. Moog, and A. M. Perdon, Algebraic methods for nonlinear control systems, Springer-Verlag London Limited 2007: Springer, 2007.
[4] A. Leonessa, W. M. Haddad, and V. Chellaboina, “Nonlinear system stabilization via hierarchical switching control,” IEEE Trans. Automatic Control, vol. 46, no. 1, pp. 17-28, 2001.
[5] G. Kaliora and A. Astolfi, “Nonlinear control of feedforward systems with bounded signals,” IEEE Trans. Automatic Control, vol. 49, no. 11, pp. 1975-1990, 2004.
[6] Y. D. Song, X. C. Huang, and C. Y. Wen, “Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction,” IEEE Trans. Industrial Electronics, 2017, DOI 10.1109/TIE.2017.2669891. In Press.
[7] M. Chen, S. Y. Shao, and B. Jiang, “Adaptive neural control of uncertain nonlinear systems using disturbance observer,” IEEE Trans. Cyber., 2017. In Press.
[8] M. Yu and Ch. Y. Li, “Robust adaptive iterative learning control for discrete-time nonlinear systems with time-iteration-varying parameters,” IEEE Trans. Syst., Man, Cyber.: Syst., 2017. In Press.
[9] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116-132, 1985.
[10] H. Ohtake, K. Tanaka, and H. Wang, “Fuzzy modeling via sector nonlinearity concept,” Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS Int. Conf., Vancouver, Canada, pp. 127–132 , 2011.
[11] T. A. Johansen, R. Shorten, and R. Murray-Smith, “On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 297-313, 2000.
[12] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, John Wiley & Sons, Inc, 2001.
[13] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM, 1994.
[14] A. Chibani, M. Chadli, M. M. Belhaouane, and N. B. Braeik, “State estimation of unknown input polynomial systems: a sum of squares approach,” the 22nd Mediterranean Conference on Control and Automation (MED), Palermo, Italy, 2014, pp. 1225-1230.
[15] M. S. B. M. Saat, “Controller synthesis for polynomial discrete-time systems,” PhD Dissertation, the University of Auckland, 2013.
[16] K. Tanaka, H. Yoshida, H. Ohtake, and Hua O. Wang, “A sum-of-squares approach to modelling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 911-922, 2009.
[17] K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 561-567, 2009.
[18] M. Narimani and H. K. Lam, “SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions,” IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 862-871, Oct. 2010.
[19] H. K. Lam, M. Narimani, H. Y. Li, and H. H. Liu, “Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function,” IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp. 800-813, 2013.
[20] K. Guelton, N. Manamanni, C. C. Duong, and D. L. Koumba-Emianiwe, “Sum-of-squares stability analysis of Takagi-Sugeno systems based on multiple polynomial Lyapunov functions,” International Journal of Fuzzy Systems, vol. 15, no. 1, pp. 1-8, March 2013.
[21] G. R. Yu, L. W. Huang, and C. Y. Cheng, “The SOS-based extended design of polynomial fuzzy control,” the IEEE International Conference on Systems, Man, and Cybernetics, October, 2012, Seoul, Korea, pp. 2463-2468.
[22] H. K. Lam and S. H. Tsai, “Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership functions,” IEEE Trans. Fuzzy Syst., vol. 22, no. 1, pp. 223-229, 2014.
[23] J. L. Pitarch, A. Sala, and C. V. Arino, “Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models,” IEEE Trans. Fuzzy Syst., vol. 44, no. 4, pp. 526-538, 2014.
[24] R. Furqon, Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, “ An SOS-based control Lyapunov function design for polynomial fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 13, no. 9, pp. 1-13, 2014.
[25] Y. J. Chen, M. Tanaka, K. Tanaka, H. Ohtake, and H. O. Wang, “Discrete polynomial fuzzy systems control,” IET Control Theory Appl., vol. 8, no. 4, pp. 288–296, 2014.
[26] C. Liu and H. K. Lam, “ Design of polynomial fuzzy observer-controller with sampled-output measurements for nonlinear systems considering unmeasurable premise variables,” IEEE Trans. Fuzzy Syst.,vol. 23, no. 6, pp. 2067-2079, 2015.
[27] H. K. Lam, L. G. Wu, and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 511-524, 2015.
[28] C. Liu, H. K. Lam, X. J. Ban, and X. D. Zhao, “Design of polynomial fuzzy observer-controller with membership function using unmeasurable premise variables for nonlinear systems,” Information Sciences, vol. 355-356, pp. 186-207, 2016.
[29] H. G. Han , J. Y. Chen , and H. R. Karimi, “State and disturbance observers-based polynomial fuzzy controller,” Information Sciences, vol. 382–383, pp. 38–59, 2017.
[30] K. Tanaka, H. Ohtake, T. Seo, and H. O. Wang, “An SOS-based observer design for polynomial fuzzy systems,” the 2011 American Control Conference on O′Farrell Street, San Francisco, CA, USA, June 29 - July 01, 2011, pp. 4953-4958.
[31] K. Tanaka, H. Ohtake, M. Wada, H. O. Wang, and Y. J. Chen, “Polynomial fuzzy observer design: a sum of squares approach,” the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, Dec. 2009, pp. 7771-7776.
[32] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H.O. Wang, “Polynomial fuzzy observer designs: a sum-of-squares approach,” IEEE Trans. Syst., Man, and Cybern.—Part B: Cybern., vol. 42, no. 5, pp. 1330-1342, Oct. 2012.
[33] Y. Y. Wang, H. G. Zhang, J. Y. Zhang, and Y. C. Wang, “An SOS-based observer design for discrete-time polynomial fuzzy systems,” Int. J. Fuzzy Syst., vol.17, no. 1, pp. 94–104, 2015.
[34] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Version 3.01, 2016.
[35] P. Bergsten, R. Palm, and D. Driankov, “Observers for Takagi–Sugeno fuzzy systems,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 32, no. 1, pp. 114-121, 2002.
[36] I. H. Brahim, M. Bouattour, D. Mehdi, M. Chaabane, and G. Hashim, “Sensor faults observer design with performance for non-linear T-S systems,” Int. Journal of Autom. and Computing, vol. 10, no. 6, pp. 563-570, 2013.
[37] M. Bouattour, M. Chadli, M. Chaabane, and A. Elhajjaji, “Design of robust fault detection observer for Takagi-Sugeno models using the descriptor approach,” Int. Journal of Control, Autom. and Syst., vol. 9, no. 5, pp. 973-979, 2011.
[38] X. P. Xie, D. S. Yang, and H. J. Ma, “Observer design of discrete-time T–S fuzzy systems via multi-instant homogenous matrix polynomials,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1714-1719, 2014.
[39] X. P. Xie and G. T. Hui, “Relaxed observer design of discrete-time T–S fuzzy systems via a novel slack variable approach,” ISA Trans., vol. 58, pp. 105-111, 2015.
[40] X. J. Su, P. Shi, L. G. Wu, and Y. D. Song, “Fault detection filtering for nonlinear switched stochastic systems,” IEEE Trans. Automatic Control, vol. 61, no. 5, pp. 1310-1315, 2016.
[41] S. C. Tong, Y. M. Li, G. Feng, and T. S. Li, “Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems,” IEEE Trans. Syst., Man and Cybernetics, Part B, vol.41, no.4, pp. 1124-1135, 2011.
[42] S. C. Tong, Y. M. Li, and P. Shi, “Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 771-785, 2012.
[43] K. Zhang, B. Jiang, and P. Shi, “Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on piecewise Lyapunov functions,” IEEE Trans. Fuzzy Syst., vol. 20, no. 1, pp. 192-200, 2012.
[44] H. X. Zhang and X. P. Xie, “Observer design of discrete-time T-S fuzzy systems via an efficient multi-instant fuzzy observer,” the Control and Decision Conference (2014 CCDC), Changsha-China, 2014, pp. 2370 – 2374.
[45] Q. X. Jia, W. Chen, Y. C. Zhang, and H. Y. Li, “Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3885-3895, 2015.
[46] X. P. Xie, D. Yue, and C. Peng, “Observer design of discrete-time T–S fuzzy systems via multi-instant augmented multi-indexed matrix approach,” Journal of the Franklin Institute, vol. 352, pp. 2899–2919, 2015.
[47] T. V. Dang and W. J. Wang, “Observer synthesis for discrete-time T-S fuzzy system with output disturbance,” International Conference on System Science and Engineering, Macau, China, June 2011, pp. 229-233.
[48] T. M. Guerra, H. Kerkeni, J. Lauber, and L. Vermeiren, “An efficient Lyapunov function for discrete T–S models: observer design,” IEEE Trans. Fuzzy Syst., vol. 20, no. 1, pp. 187-192, 2012.
[49] A. Boulkroune, M. Tadjine , M. M’Saad, and M. Farza, “Design of a unified adaptive fuzzy observer for uncertain nonlinear systems,” Information Sciences, vol. 265, p. 139-153, 2014.
[50] H. Gassara, A. E. Hajjaji, and M. Chaabane, “Observer-based robust H∞ reliable control for uncertain T–S fuzzy systems with state time delay,” IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1027-1040, 2010.
[51] A. Golabi, M. Beheshti, and M. H. Asemani, “H∞ robust fuzzy dynamic observer-based controller for uncertain Takagi–Sugeno fuzzy systems,” IET Control Theory Appl., vol. 6, no. 10, pp. 1434–1444, 2012.
[52] S. C. Tong and H. H. Li, “Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets and Systems, vol. 131, pp. 165 – 184, 2002.
[53] M. Chadli and A. E. Hajjaji, “Comment on: Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets and Systems, vol. 157, pp. 1276 – 1281, 2006.
[54] M. H. Asemani and V. J. Majd, “A robust H∞ observer-based controller design for uncertain T–S fuzzy systems with unknown premise variables via LMI,” Fuzzy Sets and Systems, vol. 212, pp. 21–40, 2013.
[55] C. Z. Gong, L. Li, and W. Wang, “Observer-based robust fuzzy control of nonlinear discrete time systems with parametric uncertainties,” Proc. of the Third International Conference on Machine Learning and Cybemetics, Shanghai, 2004, pp. 26-29.
[56] M. Kchaou, M. Souissi, and A. Toumi, “Robust H2 observer-based control design for discrete-time-delay fuzzy systems,” Int. J. of Inf. and Syst. Sci., vol. 6, no. 1, pp. 35–48, 2010.
[57] T. V. Dang, W. J. Wang, C. H. Huang, C.H. Sun, and L. Luoh, “Observer synthesis for the T-S fuzzy system with uncertainty and output disturbance,” J. Intell. Fuzzy Syst., vol. 22, no. 4, pp. 173-183, 2011.
[58] T. V. Dang, W. J. Wang, L. Luoh, and C.H. Sun, “Adaptive observer design for the uncertain Takagi-Sugeno fuzzy system with output disturbance,” IET Contr. Theory Appl., vol. 6, no. 10, pp. 1351-1366, 2012.
[59] W. Chen and M. Saif, “Design of a TS based fuzzy nonlinear unknown input observer with fault diagnosis applications,” Journal of Vibration and Control, vol. 16, no. 3, pp. 377-401, 2010.
[60] M. Chadli, “A LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models,” Asian Journal of Control, vol. 12, no. 4, pp. 524-530, 2010.
[61] M. Chadli and H. R. Karimi, “Robust observer design for unknown inputs Takagi–Sugeno models,” IEEE Trans. Fuzzy Syst., vol. 21, no.1, pp. 158-164, 2013.
[62] S. H. Guo, F. L. Zhu, and L. Y. Xu, “Unknown input observer design for Takagi-Sugeno fuzzy stochastic System,” Int. J. Control, Autom., Syst., vol. 13, no. 4, pp. 1-7, 2015.
[63] S. J. Yeh, W. Chang, and W. J. Wang, “Unknown input based observer synthesis for uncertain T-S fuzzy systems,” IET Control Theory Appl, vol. 9, no. 5, pp. 729-735, 2015.
[64] J. Yoneyama, “H∞ output feedback control for fuzzy systems with immeasurable premise variables: discrete-time case,” Applied Soft Computing, vol. 8, pp. 949–958, 2008.
[65] D. Ichalal, B. Marx, J. Ragot, and D. Maquin, “State estimation of Takagi–Sugeno systems with unmeasurable premise variables,” IET Control Theory Appl., vol. 4, no. 5, pp. 897–908, 2010.
[66] H. Ghorbel, A. El Hajjaji, M. Souissi, and M. Chaabane, “Improvement on observer-based H∞ tracking control for TS fuzzy systems with unmeasurable premise variables,” the 52nd IEEE Conference on Decision and Control, Florence- Italy, December-2013, pp. 10-13.
[67] Z. Lendek, T. M. Guerra, R. Babuška, and B. D. Schutter, Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models, Springer, Germany, 2010.
[68] Z. Lendek, J. Lauber, T. M. Guerra, R. Babuska, and B. D. Schutter, “Adaptive observers for TS fuzzy systems with unknown polynomial inputs,” Fuzzy Sets and Systems, 161, pp. 2043-2065, 2010.
[69] K. Tanaka, M. Tanaka, Y. J. Chen, and H. O. Wang, “A new sum-of-squares design framework for robust control of polynomial fuzzy systems with uncertainties,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 94-110, 2016.
[70] A. Chibani, M. Chadli, M. M. Belhaouane, and N. B. Braiek, “Polynomial observer design for unknown inputs polynomial fuzzy systems: A Sum of Squares approach,” the 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, Dec., 2014, pp. 6788-6793.
[71] A. Chibani, M. Chadli, and N. B. Braiek, “A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs,” International Journal of Control, Automation and Systems, vol. 14, no. 1, pp. 323-330, 2016.
[72] K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 582-589, 2003.
[73] S. H. Kim and P. G. Park, “Observer-based relaxed H∞ control for fuzzy systems using a multiple Lyapunov function,” IEEE Trans. Fuzzy Syst., vol. 17, no. 2, pp. 476-484, 2009.
[74] H. N. Wu and H. X. Li, “Hinfinite fuzzy observer-based control for a class of nonlinear distributed farameter systems with control constraints,” IEEE Trans. Fuzzy Syst., vol. 16, no. 2, pp. 502-516, 2008.
[75] J. X. Dong and G. H. Yang, “H∞ Controller synthesis via switched PDC scheme for discrete-time T–S fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 544-555, 2009.
[76] C. S. Tseng,“A novel approach to H∞ decentralized fuzzy-observer-based fuzzy control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1337-1350, 2008.
[77] S. H. Li, J. Yang, W. H. Chen, and X. S. Chen, Disturbance observer-based control: methods and applications, Broken Sound Parkway NW: CRC Press Taylor & Francis Group, 2014.
[78] W. H. Chen, J. Yang, L. Guo, and S. H. Li, “Disturbance-observer-based control and related methods an overview,” IEEE Trans. Industrial Electronics, vol. 63, no. 2, pp. 1083-1095, 2016.
[79] X. Lu, H. Lin, and J. Han, “Load disturbance observer-based control method for sensorless PMSM drive,” IET Electr. Power Appl., vol. 10, no. 8, pp. 735–743, 2016.
[80] H. Han and Y. Higaki, “A design of polynomial fuzzy controller with disturbance observer,” in SCIS&ISIS 2014, Kitakyushu, Japan, December 3-6, 2014, pp. 550-554.
[81] T. D. Do, “Disturbance observer-based fuzzy SMC of WECSs without wind speed measurement,” IEEE Access, 2016, In Press.
[82] Y. Yi, W. X. Zheng, C. Y. Sun, and L. Guo, “DOB fuzzy controller design for non-Gaussian stochastic distributionsystems using two-step fuzzy identification,” IEEE Trans. Fuzzy Syst., vol. 24, no. 2, pp. 401-418, 2016.
[83] H. N. Wu, H. D. Wang, and L. Guo,“Disturbance rejection fuzzy control for nonlinear parabolic PDE systems via multiple observers,” IEEE Trans. Fuzzy Syst., vol. 24, no. 6, pp. 1334-1348, 2016.
[84] H. N. Wu, Z. Y. Liu, and L. Guo,“Robust L∞-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1401-1412, 2014.
[85] H. N. Wu, S. Feng, Z. Y. Liu, and L. Guo, “Disturbance observer based robust mixed H2/H∞fuzzy tracking control for hypersonic vehicles,” Fuzzy Sets and Systems, vol. 306, pp. 118–136, 2017.
[86] X. J. Wei, Z. J. Wu, and H. R. Karimi, “Disturbance observer-based disturbance attenuation control for a class of stochastic systems,” Automatica, vol. 63, pp. 21-25, 2016.
[87] H. B. Sun and L. Guo, “Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances,” Journal of the Franklin Institute, vol. 351, pp. 1027-1041, 2014.
[88] W. H. Chen, “Disturbance observer based control for nonlinear systems,” IEEE/ASME Trans. Mechantronics, vol. 9, no. 4, pp. 706-710, 2004.
[89] J. H. Zhang, X. W. Liu, Y. Q. Xia, Z. Q. Zuo, and Y. J. Wang, “Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances,” IEEE Trans. Industrial Electronics, vol. 63, no. 11, pp. 7040-7048, 2016.
[90] L. Sun and Z. W. Zheng, “Disturbance observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty,” IEEE Trans. Industrial Electronics, 2017, In Press.
[91] R. Rashad, A. El-Badawy, and A. Aboudoni, “Sliding mode disturbance observer-based control of a twin rotor MIMO system,” ISA Transactions, 2017, In Press.
[92] Z. T. Chen, Z. J. Li, and C. L. P. Chen, “Disturbance observer-based fuzzy control of uncertain MIMO mechanical systems with input nonlinearities and its application to robotic exoskeleton,” IEEE Trans. Cyber., vol. 47, no. 4, pp. 984-994, 2017.
[93] Y. C. Chak, R. Varatharajoo, and Y. Razoumny, “Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system,” Acta Astronautica, vol. 133, pp. 302-310, 2017.
[94] H. An, J. X. Liu, C. H. Wang, and L. G. Wu, “Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles,” IEEE Trans. Industrial Electronics, vol. 63, no. 5, pp. 3038-3049, 2016.
[95] S. K. Nguang, M. Krug, and S. Saat, “Nonlinear static output feedback controller design for uncertain polynomial systems: an iterative sums of squares approach,” the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), June 2011, pp. 979-984.
[96] S. Saat, S. K. Nguang, J. Wu, and G. B. Zeng, “Nonlinear robust state feedback Control of uncertain polynomial discrete-time systems: an integral action approach,” The 12th International Conference on Control, Automation, Robotics & Vision, Guangzhou, China, December 2012, pp. 486-491.
[97] S. K. Nguang, S. Saat, and M. Krug, “Static output feedback controller design for uncertain polynomial systems: an iterative sums of squares approach,” IET Control Theory Appl., vol. 5, no. 9, pp. 1079–1084, 2011.
[98] S. Saat, and S. K. Nguang, “Nonlinear output feedback control with integrator for polynomial discrete-time systems’, Int. J. Robust Nonlinear Control, vol. 25, pp. 1051–1065, 2015.
[99] S. Saat, D. Huang, and S. K. Nguang, “Robust state feedback control of uncertain polynomial discrete-time systems an integral action approach,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 3, pp. 1233-1244, 2013.
[100] S. Saat, D. Huang, S. K. Nguang, and A. H. Hamidon, “Nonlinear state feedback control for a class of polynomial nonlinear discrete-time systems with norm-bounded uncertainties: an integrator approach,” Journal of the Franklin Institute, vol. 350, pp. 1739–1752, 2013.
[101] S. Saat, S. K. Nguang, and C. M. Lin, “Robust Nonlinear state feedback Control of polynomial discrete-time systems: an integrator approach,” Circuits Syst. Signal Process, vol. 33, pp. 331–346, 2014.
[102] Y. Y. Wang, H. G. Zhang, Y. C. Wang, and J. Y. Zhang, “Stability analysis and controller design of discrete-time polynomial fuzzy time-varying delay systems,” Journal of the Franklin Institute, vol. 352, pp. 5661–5685, 2015.
[103] H. S. Kim, J. B. Park, and Y. H. Joo, “Robust stabilization condition for a polynomial fuzzy system with parametric uncertainties,” the 2012 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, Oct., 2012, pp. 107-111.
[104] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnam, Linear Matrix Inequalities in Systems and Control Theory, Philadelphia, PA:SIAM, 1994.
[105] A. J. Laub, Matrix analysis for scientists and engineers, Siam, 2005.
[106] A. Kruszewski, R. Wang and T.M. Guerra, "Non-quadratic stabilization conditions for a class of uncertain nonlinear discrete time T-S fuzzy models: A new approach," IEEE Trans. Automatic Control, vol. 53, no 2, pp. 606-611, 2008.
[107] J. Yoneyama, “H∞ filtering for fuzzy systems with immeasurable premise variables: An uncertain system approach,” Fuzzy Sets and Systems, vol. 160, pp. 1738–1748, 2009.
[108] A. M. Nagy Kiss, B. Marx, G. Mourot, G. Schutz, and J. Ragot, “Observers design for uncertain Takagi–Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant,” Journal of Process Control, vol. 21, pp. 1105– 1114, 2011.
[109] J. G. Kushewski, “Application of feedforward neural networks to dynamical system identification and control,” IEEE Trans. Control Syst. Technology, vol. 1, no. 1, pp. 37-49, 1993.
[110] K. Tanaka, T. Ikeda, and H.O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250 -265, 1998.
[111] P. J. Antsaklis and A. N. Michel, Linear systems, chapter 7, Birkhauser Boston, 2006.
[112] Polynomial Toolbox 3.0 Manual for Matlab, PolyX, Ltd, September 2009.
[113] W.S. Levine, The control hand book, vol. 1, Jaico Publishing House, 1999.
[114] Y. Wu and J. X. Dong, “Fault estimation and fault tolerant control for T-S fuzzy systems,” the 2016 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), Jinzhou, China, 2016, pp. 97-102.
[115] J. Han, H. G. Zhang, Y. C. Wang, and Y. Liu, “Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models,” ISA Transactions, vol. 59, pp. 114-124, 2015.
[116] Q. X. Jia, W. Chen, Y. C. Zhang, and H. Y. Li, “Fault reconstruction and fault-tolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays,” IEEE Trans. Industrial Electronics, vol. 62, no. 6, pp. 3885-3895, 2015.
[117] S. Saat, S. K. Nguang, A. M. Darsono, and N. Azman, “Nonlinear feedback control with integrator for polynomial discrete-time systems,” Journal of the Franklin Institute, vol. 351, pp. 4023–4038, 2014.
[118] K. Zhang, B. Jiang, and P. Shi, “A new approach to observer-based fualt-tolerant controller design for Takagi-Sugeno fuzzy systems with delay,” Circuits Syst. Signal Process, vol. 28, pp. 679-697, 2009.
[119] C. S. Han, G. J. Zhang, L. G. Wua, and Q. S. Zeng, “Sliding mode control of T–S fuzzy descriptor systems with time-delay,” Journal of the Franklin Institute, vol. 349, pp. 1430–1444, 2012.
[120] Z. W. Gao, X. Y. Shi, and S. X. DING, “Observer design for T-S fuzzy systems with measurement output noises,” the 16th Triennial World Congress, Prague, Czech Republic, 2005, pp. 455-460.
[121] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and Linear Matrix Inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1-13, 1996.
[122] P. Kudva, N. Viswanadham, and A. Ramakrishna, “Observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 25, no. 1, pp. 113-115, 1980.
[123] M. Darouach, M. Zasadzinski, and S. J. Xu, “Full-order observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 606-609, 1994.
[124] W. Chen and M. Saif,“Design of a TS based fuzzy nonlinear unknown input observer with fault diagnosis applications,”Journal of Vibration and Control , vol. 16, no. 3, pp. 377-401, 2010.
指導教授 王文俊(Wen-June Wang) 審核日期 2017-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明