博碩士論文 104323025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.147.58.159
姓名 張靖(Ching Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 擺線行星齒輪傳動機構之動態負載分析
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 擺線行星齒輪機構為擺線行星齒輪與漸開線行星齒輪的組成,一般業者多以商品名稱RV機構稱之。由於擺線齒輪齒形為短齒高,因此可達成少齒差的關係。此關係使擺線行星齒輪機構具有高減速比以及多接觸齒對等特性,而且相較於漸開線齒輪可以承受更高的負載、吸收更大的衝擊,而具有功率密度極高的特性。而另一方面,擺線行星齒輪的多接觸齒對特性亦可達成低背隙,進而使整體機構滿足高傳動精度的要求。以上特性使此擺線行星齒輪機構廣泛應用在重負載、高衝擊或需要高傳動精度的場合,如自動化機械、土木機械、風機偏航變槳系統等。但擺線行星齒輪機構的功率分流及多齒對嚙合的特性,使得三根曲軸、兩擺線盤的扭矩分配以及各接觸齒對之負載分配在分析上相當困難。另一方面,擺線行星齒輪機構中的擺線齒盤在運轉時為以偏心方式運動,而且軸承剛性亦不可忽略,因此與靜態條件相比,在動態負載關係上將額外受離心力、慣性力以及軸承剛性的影響,所以扭力分配及各齒對的負載分配在動態下之分析為必要的研究課題。
本論文之目的為應用電腦輔助分析軟體Adams建立一動態負載分析模型。在研究中首先利用有限元素分析結果調整接觸齒對之嚙合剛性,再以經過調整之剛性參數,分析準靜態狀況下的各齒對負載,所得結果與已有的受載齒面接觸分析數值模擬結果極為相近,顯見此方法具有極佳的可信度。因此在本研究中則以此方式建立分析模型,並將軸承設定為彈性體。負載分析案例則包括銷輪輸出及托架輸出等兩組不同應用場合之減速機,而此兩案例亦因應用場合不同,具有不同的齒廓修形設計。本研究所使用的分析條件包括準靜態,以及多組不同轉速的定速與具有加減速等動態條件,用以釐清動態條件對負載分配的影響;並同時將軸承設定為彈性體。而本研究中的分析項目包括無誤差與具擺線盤偏心誤差下的傳動誤差,擺線齒輪、漸開線齒輪接觸齒對之負載分配,擺線齒盤支撐軸承負載變化,曲軸扭力分配,以及兩擺線齒盤扭力分配等。
由分析結果顯示,不同的擺線齒廓修整參數會對傳動誤差及擺線盤各齒對的負載分配變化趨勢造成影響;同時軸承的非線性剛性亦會導致兩擺線齒盤及三曲軸扭力分配不均的現象,其中曲軸的負載變化的振幅值為理論值的13%,擺線齒盤則為1%。而轉速大小亦會明顯影響擺線盤齒對之分配負載大小及趨勢,當轉速提高後將使齒對接觸提早結束,且最大負載也隨之增加;例如在輸出轉速為30rpm的條件下,負載最大值可達到靜態條件的1.5倍。
透過分析結果顯示本研究所提出之電腦輔助分析方法,可以有效分析擺線行星齒輪機構中負載變化受軸承剛性對以及轉速等動態影響。

關鍵字:擺線行星齒輪減速機、動態負載分析、多齒對接觸、Adams
摘要(英) The cycloid planetary gear drives, so-called RV-drives in the industries, consist of a cycloid planetary gear stage and an involute planetary gear stage. Due to the short tooth depth of cycloid profile, a small tooth number difference can be achieved for application with a high reduction ratio and multiple tooth pairs in contact. With these features the cycloid planetary gear drives can have higher durability, higher shock absorbability and higher power density than the conventional involute planetary gear drives. On the other hand, the multiple contact tooth pairs can also provide lower backlashes, which make precision transmission possible. Because of the above features the cycloid planetary gear drives are widely applied in the conditions with heavy load, shock or high precision, for example, automatic machinery, civil machinery, as well as yaw and pitch system of wind turbines. However, the analysis of the split torques among the crankshafts and the two cycloid disks as well as the shared loads among the contact tooth pairs becomes difficult, because of multiple tooth pairs in contact and power split. On the other hand, the cycloid disks move eccentrically and the bearing stiffness can not be ignored. The dynamic loading conditions are influenced additionally by centrifugal and inertia effect and the bearing stiffness with comparison of static analysis. The power distribution and the load sharing of tooth pairs in cycloid planetary gear drives are the essential research topics.
The purpose of this thesis is to establish a dynamic analysis model by using software Adams for load analysis of the cycloid planetary gear drives. In the study the meshing stiffness of the contact tooth pairs is at first determined by using FEM. The analysis result of load sharing of contact tooth pairs with the obtained stiffness parameters has a good agreement with a loaded tooth contact analysis (LTCA) approach. This method is obviously reliable. The analysis model is therefore established with aid of this approach, and the bearing stiffness is considered in the model. The study cases in the thesis for dynamic load analysis include two different reducers, each having the pin-wheel or the carrier as the output component. The tooth modification of the two cases are different due to different application conditions. The boundary conditions for dynamic load analysis include quasi-static, various constant speeds, and variable speed conditions. The analysis items in the thesis are the transmission error with/without eccentric error of cycloid disks, shared loads in cycloid and involute tooth pairs, variation of bearing loads for supporting the cycloid disks, and the distribution of the torques to the crankshafts and cycloid disks.
The results show that different kinds of tooth modification cause different variations in tooth contact force. The nonlinear bearing stiffness will cause also unevenly shared torques between crankshafts and cycloid disks. The variation of the unevenly shared torques among the three crankshafts is about 13%, and 1% between the two cycloid disks. The dynamic conditions affect also the tooth contact forces, not only in the trend and but also the maximum value of the shared forces. As the speed increases, the end of tooth contact occurs earlier, and the maximum value of the shared loads also increase, for example, the maximum value in the condition of the output speed 30 rpm is 1.5 times as much as that in the quasi-static condition.
The analysis results show that the computer-aided analysis approach proposed in this study can effectively analyze the varaition of dynamic loads in the cycloidal planetary gear deives due to the bearing stiffness and the rotational speed.

Keywords:Cycloid planetary gear drives, Dynamic load analysis, Multiple tooth contact, Adams
關鍵字(中) ★ 擺線行星齒輪減速機
★ 動態負載分析
★ 多齒對接觸
★ adams
關鍵字(英) ★ Cycloid planetary gear drives
★ Dynamic load analysis
★ Multiple tooth contact
★ adams
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 x
表目錄 xviii
第1章 前言 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的 5
1.4 論文架構 6
第2章 理論基礎 8
2.1 行星-擺線減速機架構 8
2.1.1 設計架構 8
2.1.2 設計參數 9
2.1.3 速比關係 11
2.1.4 扭力傳遞關係 12
2.1.5 齒對嚙合頻率 14
2.2 擺線齒輪齒形 14
2.2.1 擺線齒輪理論齒形 15
2.2.2 擺線齒輪修整齒形 15
2.3 TCA與LTCA數值分析模型 21
2.3.1 傳動誤差 21
2.3.2 單一齒對嚙合過程中之分配負載變化 22
2.3.3 各齒對之負載分配率 23
2.4 Adams應用於多接觸對分析要點 23
2.4.1 Adams分析問題 24
2.4.2 Adams接觸求解器設定驗證 27
2.4.3 Adams剛性設定驗證 28
第3章 分析案例 30
3.1 分析模型建構 30
3.1.1 基本設計參數 30
3.1.2 擺線齒輪修整參數 31
3.1.3 幾何模型建構 34
3.1.4 軸承模型建構 38
3.1.5 接觸參數設定 38
3.2 RV機構傳動誤差分析條件 39
3.2.1 理想加工條件下傳動誤差分析 39
3.2.2 加工誤差下傳動誤差分析 40
3.3 RV機構準靜態與動態負載分析條件 41
3.3.1 準靜態負載分析 41
3.3.2 定轉速下動態負載分析 42
3.3.3 加減速下動態負載分析 42
第4章 RV機構傳動誤差分析 46
4.1 理想狀況下之傳動誤差分析 46
4.1.1 分析案例一 46
4.1.2 分析案例二 48
4.2 擺線齒盤偏心誤差下雙盤擺線盤傳動誤差分析 50
4.2.1 分析案例一 50
4.2.2 分析案例二 52
4.3 結果討論 53
第5章 擺線齒輪受載齒面接觸分析 54
5.1 準靜態接觸負載分析 54
5.1.1 分析案例一 54
5.1.2 分析案例二 62
5.2 定轉速下動態接觸負載分析 68
5.2.1 分析案例一 69
5.2.2 分析案例二 74
5.3 加減速下動態接觸負載分析 79
5.4 小結 82
第6章 漸開線齒輪受載齒面接觸分析 84
6.1 準靜態接觸負載分析 84
6.1.1 分析案例一 84
6.1.2 分析案例二 89
6.2 定轉速下動態接觸負載分析 93
6.2.1 分析案例一 93
6.2.2 分析案例二 96
6.3 加減速下動態接觸負載分析 99
6.4 小結 102
第7章 軸承負載分析 104
7.1 準靜態接觸負載分析 104
7.1.1 分析案例一 104
7.1.2 分析案例二 108
7.1.3 軸承剛性特性對負載變化影響 111
7.2 定轉速下動態接觸負載分析 113
7.2.1 分析案例一 113
7.2.2 分析案例二 115
7.3 加減速下動態接觸負載分析 117
7.4 小結 118
第8章 結論與未來展望 120
8.1 結論 120
8.2 未來展望 122
參考文獻 123
附錄A:FEM剛性分析與結果比對 127
參考文獻 [1] Braren, L.K.: Gear Transmission, US Patent 1694031, 1928.
[2] Kiyozumi, F.: Speed Change Device, US Patent 4348918, 1980.
[3] Mastsumo, H.: Robot Arm Drive Apparatus of Industrial Robot, US Patent 4348918, 1980.
[4] Ogata, S., Taki, K.: “Planetary Reduction Gear”. US Patent 4898065 A, 1990.
[5] Fujimoto, K. “Eccentric Orbiting Type Speed Reducer”. US Patent 6508737 B2, 2003.
[6] Nohara, O., Yokoyama, K. “Eccentric Oscillating-type Speed Reducer”. US Patent 6679801 B2, 2004.
[7] 關天民,“擺線針輪行星傳動中擺線輪最佳修形量的确定方法”,中國機械工程學會會刊,第13卷第10期,811-813頁,2002。
[8] 關天民,“擺線針輪行星傳動中反弓齒廓研究及其优化設計”, 大連鐵道學院學報,第26卷第4期,17-20頁,2005。
[9] 關天民,“擺線針輪行星傳動中反弓齒廓研究与分析”,大連鐵道學院學報,第32卷第2期,24-32頁,2011。
[10] 黃重憲,“具修整齒形擺線傳動器之曲面設計、齒形接觸分析與最佳修整參數設計的研究”,國立成功大學機械工程學系碩士論文,2006。
[11] 林灣松,“二階擺線減速機之運動誤差分析與設計”,國立台灣大學機械工程學系碩士論文,2013。
[12] Blanche, J. G. and Yang, D. C. H.: “Cycloid Drives with Machining Tolerances”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111,No. 3, pp. 337-344, 1989.
[13] Yang, D. C. H. and Blanche, J. G.: “Design and Application Guidelines for Cycloid Drives with Machining Tolerances”, Mechanism and Machine Theory, Vol. 25, Issue 5, pp. 487-501, 1990.
[14] Hidaka, T., Wang, H. and Ishida, T.: “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 1st Report, Analytical Method of the Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 570, pp. 645-653, 1994.
[15] Ishida, T., Wang, H. Y. and Hidaka, T.: “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 2nd Report, Effects of Manufacturing and Assembly Errors on Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 578, pp. 278-285, 1994.
[16] Wang, H. Y., Ishida, T. and Hidaka, T.: “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 3rd Report, Mutual Effects of Errors of the Elements on the Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 578, pp. 286-293, 1994.
[17] 黃薇臻,“考慮主要誤差下具修整齒廓之擺線行星齒輪傳動機構之接觸特性”,國立中央大學機械工程學系碩士論文,2016。
[18] Malhotra, S. K. and Parameswaran, M. A.: “Analysis of a Cycloid Speed Reducer”, Mechanism and Machine Theory Vol. 18, No. 6, pp. 491-499, 1983.
[19] Dong, X., Deng, J. and Chen, J.: “Force Analysis of RV Transmission Mechanism”, Journal of Shanghai Jiao Tong University, Vol.30, No.5, pp. 65-70, 84, 1996.
[20] Chmurawa, M. and Antoni, J.: “FEM in Numerical Analysis of Stress and Displacement Distribution in Planetary Wheel of Cycloidal Gear”, Spring-Verlag Berlin Heidelberg, pp. 772-799, 2000.
[21] 曾柏桑,“以有限元素法分析擺線減速機之受力表現”,國立台灣大學機械工程學系碩士論文,2016。
[22] Kim, Y. H., Lee, C. S. and Ahn, H. J.: “Torsional Rigidity of a Cycloid Drive Considering Finite Bearing and Hertz Contact Stiffness.” Proceedings of MPT2009-Sendai, JSME International Conference on Motion and Power Transmissions, May 13-15, Matsushima Isles Resort, Japan, 2009.
[23] Li, S.: “Design and Strength Analysis Methods of the Trochoidal Gear Reducers.” Mechanism and Machine Theory. 81, pp. 140-154, 2014.
[24] Wu, S. H. and Tsai, S. J.: “Contact Stress Analysis of Skew Conical Involute Gear Drives in Approximate Line Contact”, Mechanism and Machine Theory, Volume 44, Issue 9, pp. 1658–1676, 2009.
[25] Tsai, S. J. and Huang, C. H.: “Loaded Tooth Contact Analysis of Cycloid Planetary Gear Drives”, 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015.
[26] Tsai, S. J., Huang, W. J. and Huang, C. H.: “A Computerized Approach for Load Analysis of Planetary Gear Drives with Epitrochoid-Pin Tooth-pairs”, VDI-Berichte 2255, pp. 307-316, 2015.
[27] Tsai, S. J. and Huang, C. H.: “A Study on Loaded Tooth Contact Anlysis of a Cycloid Planetary Gear Reducer Considering Bearing Roller Stiffness”, The JSME International Conference on Motion and Power Transmissions, 2017.
[28] Do, T. P. and Ziegler, P.:“Review on Contact Simulation of Beveloid and Cycloid Gears and Application of a Modern Approach to Treat Deformations”, Mathematical and Computer Modelling of Dynamical Systems, 2015.
[29] Thube, S. V. and Bobak, T. R.: “Dynamic Analysis of a Cycloidal Gearbox Using Finite Element Method”. 12FTM18, AGAMA Fall Technical Meeting, 2012.
[30] Chmurawa, M. and Lokiec, A.: “Distribution of Loads in Cycloidal Planetary Gear (Cyclo) including Modification of Equidistant”, Proceedings of the 16th European Mechanical Dynamics User Conference, 2001.
[31] Nabtesco Co., Ltd., https://www.nabtesco.com/en/
[32] Transmission Machinery Co., Ltd., http://www.transcyko-transtec.com/
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2017-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明