博碩士論文 104323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.191.19.24
姓名 于德維(De-Wei Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文量測高溫高壓條件下,異辛烷之預混層流與紊流火焰之燃燒速度。主要探討熱擴散不穩定性(thermodiffusive instability)對紊流燃燒速度ST之影響,並分別探討在固定流場紊流雷諾數ReT,flow = u′LI/v和固定紊流擾動速度u′條件下,壓力效應對ST之影響,其中LI為紊流積分長度尺度,v為運動黏滯係數。實驗於一高壓高溫雙腔體十字型風扇擾動預混紊流燃燒設備進行,它可產生一近似等向性紊流場,可在固定溫度(T)、壓力(p)、u′和ReT,flow條件下進行實驗。我們使用液態燃料異辛烷作為燃料,先將異辛烷注入已抽真空之另一加熱腔體,使其完全氣化後再以分壓方式將適量的異辛烷注入十字型風扇擾動爐體內,並在實驗前與空氣預混。實驗開始於中央引燃,以高速紋影法紀錄往外傳播球狀火焰半徑之時序圖(t)。我們量測三種不同當量比(phi = 0.9, 1.0, 1.25)之異辛烷/空氣燃氣,分別對應之 Lewis數為Le ≈ 2.94、Le ≈ 1.43和Le ≈ 0.93。比較當量比phi = 0.9(Le > 1)與1.25(Le < 1)之燃氣,兩者均使用相同實驗範圍進行實驗,即在T = 358K、p = 1 ~ 5atm和u′ = 1.4m/s或ReT,flow = 6700。而有關phi = 1.0之燃氣,也是在T = 358K和p = 1 ~ 5atm範圍,但更擴大紊流實驗範圍,即在u′ = 1.0, 1.4, 2.8 m/s和ReT,flow = 6700, 9100, 11600,以深入探討ReT,flow效應。結果顯示,在固定u′時,ST值會隨p增加而增加,這主要是因為ReT,flow會隨壓力增加而增加之故。反之,在固定ReT,flow時,ST則會隨p增加而下降,其趨勢與層流燃燒速度(SL)相似,即ST和SL對壓力效應均呈指數下降之關係,這顯示ReT,flow對ST之重要性。在固定壓力下,ST值會隨ReT,flow增加而上升。另外,Le數對紊流燃燒速度也有重要之影響,我們發現Le < 1紊焰(phi = 1.25, Le ≈ 0.93)其ST值明顯高於Le > 1紊焰(phi = 0.9, Le ≈ 2.94),請注意這是在兩者之SL和u′ = 1.4m/s為近乎相等的情況下所得的結果,其原因為Le < 1紊焰會額外受到熱擴散不穩定性之影響。
本論文也以實驗室常用之Damköhler number正規化關係式,即ST,c=0.5/u′ = A1(Da)B1,以及由Kobayashi et al.與Chaudhuri et al.所提出之正規化關係式,分別為ST,c=0.5/SL = A2[(u′/SL)(p/p0)]B2與[(1/SLb)(d/dt)] = A3(ReT,flame)B3,來分析三種不同Le數之ST資料,其中下標c ̅為平均傳遞變數,Damköhler number Da = (LI/u′)(SL/L),L為層流火焰厚度,p0為一大氣壓,A1 ~ A3和B1 ~ B3為實驗常數,SLb為生成物之層流燃燒速度,火焰紊流雷諾數ReT,flame = (u′/SL)(/L)。我們發現原相當分散之正規化ST資料,可經由加入Le數之考量修正後合併成單一曲線,分別為ST,c=0.5/u′ = 0.087(DaLe-1)0.5、ST,c=0.5/SL = 3.5[(u′/SL)(p/p0)Le-1]0.24與[(1/SLb)(d/dt)] = 0.35(ReT,flameLe-1)0.33,顯示不同u′、p和phi值下之紊流燃燒速度經Le-1修正後具有相似性。很可惜的事,冪次常數B2 = 0.24和B3 =
0.33小於先前氣態甲烷燃料之值(B2 = 0.38; B3 = 0.53),僅B1 =
0.5與先前氣態甲烷燃料(B1 = 0.53)接近。我們將先前文獻上僅有的異辛烷ST資料(由Leeds Prof. Lawes團隊所量得),用ST,c = 0.5/u′ vs. (DaLe-1)0.5關係與目前ST資料作比較,得到相當吻合的結果,顯示ST,c = 0.5/u′ = (DaLe-1)0.5之關係為一較優的一般通式。此研究結果,對高溫高壓預混紊流燃燒相關之應用,如車輛及航空引擎之燃燒研究有所助益。
摘要(英) This thesis measures quantitatively burning velocities of high-temperature, high-pressure premixed laminar and turbulent flames of iso-octane/air. We mainly explore the effects of thermodiffusive instability and pressure at constant turbulent Reynolds number (ReT,flow = u′LI/v) and constant r.m.s. turbulent fluctuation velocity (u′) on turbulent burning velocities ST, where LI and v are the integral length scale of turbulence and the kinematic viscosity of reactants respectively. Experiments were conducted in a high-pressure, high-pressure, double-chamber, cruciform fan-stirred premixed turbulent explosion facility, capable of generating a near-isotropic turbulence for conducting combustion experiments at fixed temperature (T), pressure (p), and u′ or ReT,flow conditions. We apply the liquid fuel (iso-octane) as a fuel which is first injected into a pre-vacuumed heating cylinder to make sure it is fully vaporized. Then we inject the pre-vaporized iso-octane into the cruciform fan-stirred burner by using the partial pressure method. The pre-vaporized iso-octane and are at T = 358K are well-mixed before a run. A run begins by centrally-igniting the combustible mixtures. The timing diagram of spherical expanding flames radii are recorded by the high-speed Schilieren imaging technique. Three equivalence ratios (phi = 0.9, 1.0, 1.25) with different Lewis numbers (Le ≈ 2.94, 1.43, and 0.93). Comparing the flames of phi = 0.9(Le > 1) and 1.25(Le < 1) are measured under the same ranges of experimental conditions i.e. T = 358K, p = 1 ~ 5atm, and u′ = 1.4 ~ 2.8m/s or ReT,flow = 6700, then the phi = 1.0 is measured more ranges of turbulent conditions i.e. u′ = 1.0, 1.4, 2.8m/s and ReT,flow = 6700, 9100, 11600 in order to further investigate the ReT,flow effect. Results show that when u′ is fixed, values of ST increase with increasing p, which is mainly due to increase of ReT,flow with increasing p. On the contrary, when ReT,flow is fixed, we find that values ST actually decrease with increasing p. Such decreasing trend of ST ~ p-0.36 is similar to laminar burning velocities (SL), showing a global response of burning velocities to the increase of pressure. When p is fixed, values of ST increase with increasing ReT,flow. In addition, it is found that the effect of Le plays an important role on ST. Le < 1 flame (phi = 1.25, Le ≈ 0.93) clearly have higher values of ST than that of Le > 1 flames (phi = 0.9, Le ≈ 2.94), both with the same SL ≈ 0.4m/s and u′ = 1.4 ~ 2.8m/s. This is because Le < 1 flames experience additional thermodiffusive instablility.
This thesis also apply that commonly used correlation of Damköhler number in the laboratory, ST,c = 0.5/u′ = A1(Da)B1, and two correlations proposed by Kobayashi et al. and Chaudhuri et al. respectively, ST,c=0.5/SL = A2(u′/SL)(p/p0)B2 and [(1/SLb)(d/dt)] = A3(ReT,flame)B3 to analyze present data with three different Le, where the subscript c is the mean progress variable, Damköhler number Da = (LI/u′)(SL/L), L is laminar flame thickness, p0 = 1atm, A1 ~ A3 and B1 ~ B3 are experimental coefficients, SLb is laminar burning velocity of product, and turbulent flame Reynolds number ReT,flame = (u′/SL)(/L). We discover that when using the Le-1 correction, all scattering ST data with different values of u′, p and phi can be collapsed onto a single curve, i.e. ST,c = 0.5/u′ = 0.087(DaLe-1)0.5, ST,c=0.5/SL = 3.5[(u′/SL)(p/p0)Le-1]0.24 and [(1/SLb)(d/dt)] = 0.35(ReT,flameLe-1)0.33. Unfortunately, the power constants of B2 = 0.24 and B3 = 0.33 are less than values (B2 = 0.38 and B3 = 0.5) of previous methane fuel and only B1 = 0.5 is close to the previous methane fuel (B1 = 0.53). We compare the only iso-octane ST data in previous literature (measured by the Leeds Prof. Lawes team) by the relationship of ST,c = 0.5/u′ vs. (DaLe-1)0.5 and get quite consistent results showing the relationship of ST,c = 0.5/u′ ~ (DaLe-1)0.5 is a better general correlation. These results are useful for the application of high-pressure, high-temperature premixed turbulent combustion such as in auto and aviation engines.
關鍵字(中) ★ 紊流燃燒速度
★ 高壓高溫
★ 流場紊流雷諾數
★ 火焰紊流雷諾數
★ Lewis數
★ Damköhler數
關鍵字(英) ★ turbulent burning velocity
★ high-pressure and high-temperature
★ turbulent flow Reynolds number
★ turbulent flame Reynolds number
★ Lewis number
★ Damköhler number
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
符號說明 XII
第一章 前言 1
1.1 研究動機 1
1.2 探討之問題 2
1.3 解決方法 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 火焰傳遞 5
2.1.1 火焰基本物理量量測 5
2.1.2 火焰拉伸 5
2.1.3 層流燃燒速度 6
2.2 紊流燃燒 7
2.2.1 預混紊流燃燒狀態圖 7
2.2.2 紊流燃燒速度 8
2.3 火焰不穩定性 9
2.3.1 流力不穩定性 9
2.3.2 熱擴散不穩定性 10
2.3.3 浮力不穩定性 11
2.4 壓力效應 11
2.4.1 壓力效應對層流火焰傳遞之影響 11
2.4.2 壓力效應對紊流火焰傳遞之影響 12
2.5 流場紊流雷諾數對紊流火焰傳遞之影響 13
2.6 紊流燃燒速度之一般通式 14
第三章 實驗設備與方法 27
3.1 高溫高壓預混紊流燃燒設備 27
3.2 燃料供應系統 29
3.3 高速影像擷取系統 29
3.4 參數計算與圖像分析 30
3.4.1 燃氣當量比 30
3.4.2 火焰傳遞速度 31
3.5 實驗流程 31
第四章 結果與討論 36
4.1層流燃燒速度 36
4.1.1層流燃燒速度量測 36
4.1.2不同當量比之層流燃燒速度量測 37
4.1.3壓力效應對層流燃燒速度之影響 37
4.2 紊流燃燒速度 38
4.2.1紊流燃燒速度量測 38
4.2.2流場紊流雷諾數與壓力效應對紊流燃燒速度之影響 40
4.2.3 Le效應對紊流燃燒速度之影響 41
4.3 紊流燃燒速度之一般通式 42
4.3.1 Damköhler number之一般通式 42
4.3.2 Kobayashi之一般通式 44
4.3.3 Chaudhuri之一般通式 45
第五章 結論與未來工作 60
5.1 結論 60
5.2 未來工作 61
參考文獻 62
參考文獻 [1] 經濟部能源局,“中華民國105年能源統計手冊”,2016年。

[2] 彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。

[3] 董益銍,“淨煤氣化合成氣貧油可燃極限與燃燒速度量測:壓力和紊流效應”,國立中央大學機械工程研究所,碩士論文,2012年。

[4] 黃信閔,“預混紊流球狀火焰速率與自我相似傳播之量測分析”,國立中央大學機械工程研究所,碩士論文,2013年。

[5] 陳立龍,“高壓預混紊流球狀擴張火焰之自我加速性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le > 1)”,國立中央大學機械工程研究所,碩士論文,2014年。

[6] 李文義,“實驗研究密度比效應對紊流火焰速率之影響”,國立中央大學能源工程研究所,碩士論文,2015年。

[7] 陳聖鶴,“高壓貧油預混氫氣紊流燃燒速度量測和正規化及其與不同碳氫燃料之比較”,國立中央大學機械工程研究所,碩士論文,2016年。

[8] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, Y. C. Dong, “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers”, Combustion and Flame, Vol. 159, pp. 2608-2619, 2012.

[9] C. W. Chiu, Y. C. Dong, S. S. Shy, “High-pressure hydrogen/carbon mono-xide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers”, International Journal of Hydrogen Energy, Vol. 37, pp. 10935-10946, 2012.

[10] D. Bradley, T. M. Cresswell, J. S. Puttock, “Flame acceleration due to flame-induced instabilities in large-scale explosions”, Combustion and Flame, Vol. 124, pp. 551-559, 2001.

[11] W. K. Kim, T. Mogi, K. Kuwana, R. Dobashi, “Self-similar propagation of expanding spherical flames in large scale gas explosions”, Proceedings of the Combustion Institute, Vol. 35, pp. 2051-2058, 2015.

[12] T. Kitagawa, T. Ogawa, Y. Nagano, “The effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames”, COMODIA, August 2-5, Japan, 2004.

[13] H. Kido, M. Nakahara, “A model of turbulent burning velocity taking the preferential diffusion effect into consideration”, JSME International Journal. Ser. B, Fluids and Thermal Engineering, Vol. 41(3), pp. 666-673, 1998.

[14] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng, “On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure”, Proceedings of the Combustion Institute, Vol. 33, pp. 1293-1299, 2011.

[15] S. Chaudhuri, F. Wu, D. Zhu, C. K. Law, “Flame speed and self-similar propagation of expanding turbulent premixed flames”, Physical Review Letters, Vol. 108, pp. 044503-1-5, 2012.

[16] G. H. Markstein, Nonsteady Flame Propagation, Pergamon, 1964.

[17] K. N. C. Bray, “Turbulent flows with premixed reactants”, Turbulent Reacting Flows, P. A. Libby & F. A. Williams Eds., pp. 115-183, New York, Springer-Verlag, 1980.

[18] R. Borghi,” On the structure and morphology of turbulent premixed flames,” C. Casci Ed., pp. 117-138, New York, Plenum, 1985.

[19] N. Peters, “Laminar flamelet concepts in turbulent combustion”, Proceedings of the Combustion Institute, Vol. 21, pp. 1231-1250, 1986.

[20] F. A. Williams, Combustion Theory, Second Ed., Addison-Wesley, Redwood City, 1985.

[21] D. Bradley, M. Lawes, M. S. Mansour, “Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa”, Combustion and Flame, Vol. 158, pp. 123-138, 2011.

[22] G. Darrieus, “Propagation d′un front de flamme”, La Technique Moderne, Paris, 1938.

[23] L. D. Landau, “On the theory of slow combustion”, Acta Physicochim URSS, Vol. 19, pp. 77-85, 1944.

[24] C. K. Law, Combustion Physics, Cambridge, New York City, 2006.

[25] I. Glassman, Combustion, Third Ed., Academic Press, San Diego City, 1996.

[26]O. C. Kwon, G. Rozenchan, C. K. Law, “Cellular instabilities and self-acceleration of outwardly propagation spherical flames”, Proceedings of the Combustion Institute, Vol. 29, pp. 1775-1783, 2002.

[27] M. Lawes, M. P. Ormsby, C. G. W. Sheppard, R. Woolley, “The turbulent burning velocity of iso-octane/air mixtures”, Combustion and Flame, Vol. 159, pp. 1949-1959, 2012.

[28]H. Kobayashi, Y. Kawabata, K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure”, Symposium (International) on Combustion, Vol. 27, pp. 941-948, 1998.

[29]H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, “Burning Velocity of Turbulent Premixed Flames in a High-pressure Environment”, Symposium (International) on Combustion, Vol. 26, pp. 389-396, 1996.

[30]L.J. Jiang, S.S. Shy, W.Y. Li, H.M. Huang, M.T. Nguyen, “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames”, Combustion and Flame, Vol. 172, pp. 173-182, 2016.

[31]S. S. Shy, W. J. Lin, K. Z. Peng, “High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner”, Proceedings of the Combustion Institute, Vol. 28, pp. 561-568, 2000.

[32]S. S. Shy, W. J. Lin, J. C. Wei, “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019, 2000.

[33]S. S. Shy, W. K. I, M. L. Lin, “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Experimental Thermal and Fluid Science, Vol. 20, pp. 105-114, 2000.

[34]T. S. Yang, S. S. Shy, Y. P. Chyou, “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis”, J. Mech., Vol. 21, pp. 157-169, 2005.

[35]T. S. Yang, S. S. Shy, “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements”, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.

[36] D. R. Lide, Handbook of Chemistry and Physics, 73rd Ed., CRC Press, Boca Raton City, 1992-1993.

[37]P. Dirrenberger, P. A. Glaude, R. Bounaceur, H. Le Gall, A. Pires da Cruz, A. A. Konnov, F. Battin-Leclerc, “Laminar burning velocity of gasolines with addition of ethanol”, Fuel, Vol. 115, pp. 162−169, 2014.

[38]L. Sileghem, V. A. Alekseev, J. Vancoillie, K. M. Van Geem, E. J. K. Nilsson, S. Verhelst, A. A. Konnov, “Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene”, Fuel, Vol. 112, pp. 355−365, 2013.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2017-12-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明