博碩士論文 104326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:3.128.78.41
姓名 林李青(Lee-Ching Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用活性碳電極對磷酸鹽類進行電容去離子之研究
(Adsorption of Phosphate on Activated Carbon Electrodes by Capacitive Deionization)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磷酸鹽類在我們的日常生活中無所不在,常被用來作為食品添加劑以及化學肥料,或者是應用在TFT-LCD製程當中的蝕刻液體。當含磷廢液排放入自然水體可能會造成優養化現象,導致水質缺氧惡化。
本研究是以配製磷酸二氫鈉溶液模擬含磷廢液來進行電容去離子實驗,藉由改變不同操作參數:流速、電壓、濃度,以及酸鹼值來探討電容去離子的脫鹽性能。本研究是以製備活性碳電極作為電容去離子的電極材料來對於磷酸鹽類進行電容吸附實驗,並利用pseudo-first-order、pseudo-second-order、Elovich 和intra-particle diffusion四種動力學模式以及Langmuir和Freundlich兩種等溫吸附模式來對用活性碳電吸附磷酸鹽類進行模擬。
活性碳電極經由特性分析的結果顯示出以中孔洞分布居多,且具有良好的電化學穩定性。由電吸附結果得知磷酸鹽類在低流速、1.2伏特下,以及弱酸條件可以達到較優異的電吸附效果。另外在低濃度的條件下進行電吸附則是可以達到較高的脫鹽效果。活性碳電吸附磷酸鹽類的動力學模式符合Elovich 和intra-particle diffusion模式,其等溫吸附模式則是符合Freundlich模式。
摘要(英) Phosphates are common inorganic salts in our lives and are often used as food additives, chemical fertilizers, etching liquids used in TFT-LCD processes, and etc. When phosphate is discharged into the natural water, it may cause the eutrophication and lead to deterioration of water quality.
In this study, capacitive deionization was employed to remove phosphate. Sodium phosphate (NaH2PO4) solution was prepared to simulate the phosphorus-containing wastewater. Activated carbon were used as electrode material of CDI to adsorb phosphates. The deionization efficiency was investigated by changing flow rate, voltage, initial concentration, and pH. Four kinetic models, including pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models, were employed to fit the electrosorption kinetic of phosphate and two isotherm models, including Langmuir and Freundlich, were employed to fit the electrosorption equilibrium of phosphate.
The specific surface area and pore size distribution and cyclic voltammogram of the activated carbon electrode showed that the mesopore was the major structure and the AC electrode had good electrochemical stability. The results suggested that slow flow rate, voltage at 1.2 V, and low pH are good for the removal of phosphate by activated carbon electrodes via CDI. The adsorption kinetics could be described by the Elovich and the intra-particle diffusion models, and the Freundlich model agreed with the isotherm for the adsorption of phosphate on activated carbon electrode.
關鍵字(中) ★ 吸附動力學
★ Freundlich等溫吸附
★ 電吸附
★ 脫附
關鍵字(英) ★ adsorption kinetics
★ Freundlich model
★ electrosorption
★ desorption
論文目次 ABSTRACT II
摘要 IV
誌謝 V
Content VII
Figures IX
Tables XI
CHAPTER I INTRODUCTION 1
1.1. Background 1
1.2. Objective 2
CHAPTER II LITERATURE REVIEW 4
2.1. Capacitive deionization 4
2.1.1. Advantages of capacitive deionization 4
2.1.2. Theory of capacitive deionization 5
2.1.3. Electric double-layer capacitor 6
2.1.4. Theory of electric double layer 7
2.1.5. Electric double-layer overlap 10
2.1.6. Non-capacitive adsorption 11
2.2. Applications of capacitive deionization 12
2.2.1. Porous carbon materials 12
2.2.2. Factors affecting electrosorption 15
2.3. Phosphorous in aqueous solution 18
2.3.1. Basic characteristics 18
2.3.2. Treatment techonologies for phosphate 20
2.3.3. Adsorption 22
CHAPTER III MATERIALS AND METHODS 23
3.1. Preparation of activated carbon electrodes 23
3.1.1. Pretreatment of activated carbon 23
3.1.2. Preparation of electrodes 24
3.2. Characterization of AC electrodes 24
3.3. Capacitive deionization of electrosorption phosphate 27
3.4. Regeneration of electrodes 30
3.5. Analysis of sodium phosphate (NaH2PO4) 30
3.6. Data analysis 32
3.6.1. Experimental calculation 32
3.6.2. Kinetic model 34
3.6.3. Isotherm model 35
CHAPTER IV RESULTS AND DISCUSSIONS 37
4.1. Characterization of activated carbon electrodes 37
4.1.1. Morphology of activated carbon 37
4.1.2. Functional groups on activated carbon 39
4.1.3. Specific surface area and pore size distribution of AC 41
4.1.4. Electrochemical properties of activated carbon electrodes 46
4.2. Non-capacitive adsorption of NaH2PO4 49
4.3. CDI of phosphate 51
4.3.1. Behavior of conductivity and concentration during electrosorption 51
4.3.2. Effects of flow rate on phosphate removal 53
4.3.3. Effects of voltage on phosphate removal 57
4.3.4. Effects of concentration on phosphate removal 60
4.3.5. Effects of pH on phosphate removal 63
4.4. Kinetics of phosphate electrosorption 66
4.5. Adsorption isotherm of phosphate 70
4.6. Characteristics of the AC electrode after electrosorption 73
CHAPTER V CONCLUSION AND SUGGESTION 75
5.1. Conclusion 75
5.2. Suggestion 76
APPENDIX 77
REFERENCES 79
參考文獻 AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., and Hilal, N.,"Application of Capacitive Deionisation in water desalination: A review", Desalination, 342, 3-15(2014).
Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, T.F.,"Advanced carbon aerogels for energy applications", Energy & Environmental Science, 4, 656-667(2011).
Chang, H., and Wu, H.,"Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications", Energy & Environmental Science, 6, 3483(2013).
Chang, L.M., Duan, X.Y., and Liu, W.,"Preparation and electrosorption desalination performance of activated carbon electrode with titania", Desalination, 270, 285-290(2011).
Chen, Z., Song, C., Sun, X., Guo, H., and Zhu, G.,"Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes", Desalination, 267, 239-243(2011).
Duan, F., Li, Y., Cao, H., Xie, Y., and Zhang, Y.,"Capacitive deionization by ordered mesoporous carbon: electrosorption isotherm, kinetics, and the effect of modification", Desalination and Water Treatment, 52, 1388-1395(2013).
Fairhurst, D.,"An Overview of the Zeta Potential-Part 1: The Concept", The Review of American Pharmaceutical Business & Technology, 1, (2013).
Figueiredo, J., Pereira, M., Freitas, M., and Orfao, J.,"Modification of the surface chemistry of activated carbons", carbon, 37, 1379-1389(1999).
Fytianos, K., Voudrias, E., and Raikos, N.,"Removal of phosphate from aqueous and wastewater samples using aluminum salts", Journal of Environmental Science & Health Part A, 31, 2621-2634(1996).
Gabelich, C.J., Tran, T.D., and Suffet, I.H.M.,"Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels", Environmental Science & Technology, 36, 3010-3019(2002).
Han, Y.-U., Park, S.-J., Lee, C.-G., Park, J.-A., Choi, N.-C., and Kim, S.-B.,"Phosphate removal from aqueous solution by aluminum (hydr) oxide-coated sand", Environmental Engineering Research, 14, 164-169(2009).
He, D., Wong, C.E., Tang, W., Kovalsky, P., and Waite, T.D.,"Faradaic reactions in water desalination by batch-mode capacitive deionization", Environmental Science & Technology Letters, 3, 222-226(2016).
Ho, Y.-S., and McKay, G.,"Pseudo-second order model for sorption processes", Process biochemistry, 34, 451-465(1999).
Hou, C.-H., and Huang, C.-Y.,"A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization", Desalination, 314, 124-129(2013).
Huang, G.-H., Chen, T.-C., Hsu, S.-F., Huang, Y.-H., and Chuang, S.-H.,"Capacitive deionization (CDI) for removal of phosphate from aqueous solution", Desalination and Water Treatment, 52, 759-765(2014).
Huang, W.E.I., Zhang, Y., Bao, S., and Song, S.,"Desalination by Capacitive Deionization with Carbon-Based Materials as Electrode: A Review", Surface Review and Letters, 20, 1330003(2013).
Jande, Y.A.C., and Kim, W.S.,"Modeling the capacitive deionization batch mode operation for desalination", Journal of Industrial and Engineering Chemistry, 20, 3356-3360(2014).
Landon, J., Gao, X., Kulengowski, B., Neathery, J.K., and Liu, K.,"Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization", Journal of The Electrochemical Society, 159, A1861-A1866(2012).
Lee, J.-H., Bae, W.-S., and Choi, J.-H.,"Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159-163(2010).
Lin, C., Ritter, J.A., and Popov, B.N.,"Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels", Journal of the Electrochemical Society, 146, 3639-3643(1999).
Liu, Y.-H., Hsi, H.-C., Li, K.-C., and Hou, C.-H.,"Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization", ACS Sustainable Chemistry & Engineering, 4, 4762-4770(2016).
Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z., and Pan, L.,"Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205-15225(2015).
Metcalf, Eddy, Burton, F.L., Stensel, H.D., and Tchobanoglous, G.,"Wastewater engineering: treatment and reuse", (2003).
Mombeshora, E.T., Simoyi, R., Nyamori, V.O., and Ndungu, P.G.,"Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells", South African Journal of Chemistry, 68, (2015).
Morse, G., Brett, S., Guy, J., and Lester, J.,"Phosphorus removal and recovery technologies", Science of the total environment, 212, 69-81(1998).
Mossad, M., and Zou, L.,"Evaluation of the salt removal efficiency of capacitive deionisation: kinetics, isotherms and thermodynamics", Chemical engineering journal, 223, 704-713(2013).
Mouallem-Bahout, M., Bertrand, S., and Peña, O.,"Synthesis and characterization of Zn 1− xNixFe 2 O 4 spinels prepared by a citrate precursor", Journal of Solid State Chemistry, 178, 1080-1086(2005).
Nadakatti, S., Tendulkar, M., and Kadam, M.,"Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology", Desalination, 268, 182-188(2011).
Neethling, J., and Gu, A.,"Chemical phosphorus removal constraints–Introduction", Session P2 in WERF, (2006).
Nie, C., Pan, L., Li, H., Chen, T., Lu, T., and Sun, Z.,"Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization", Journal of Electroanalytical Chemistry, 666, 85-88(2012).
Ozcan, A.S., Erdem, B., and Ozcan, A.,"Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite", J Colloid Interface Sci, 280, 44-54(2004).
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J., Keesman, K., Kaskel, S., Biesheuvel, P., and Presser, V.,"Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization", Energy & Environmental Science, 6, 3700-3712(2013a).
Porada, S., Weinstein, L., Dash, R., van der Wal, A., Bryjak, M., Gogotsi, Y., and Biesheuvel, P.M.,"Water desalination using capacitive deionization with microporous carbon electrodes", ACS Appl Mater Interfaces, 4, 1194-1199(2012).
Porada, S., Zhao, R., van der Wal, A., Presser, V., and Biesheuvel, P.M.,"Review on the science and technology of water desalination by capacitive deionization", Progress in Materials Science, 58, 1388-1442(2013b).
Roques, H., Nugroho-Jeudy, L., and Lebugle, A.,"Phosphorus removal from wastewater by half-burned dolomite", Water Research, 25, 959-965(1991).
Shin, E.W., Han, J.S., Jang, M., Min, S.-H., Park, J.K., and Rowell, R.M.,"Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents", Environmental science & technology, 38, 912-917(2004).
Sperlich, A., Warschke, D., Wegmann, C., Ernst, M., and Jekel, M.,"Treatment of membrane concentrates: phosphate removal and reduction of scaling potential", Water Science and Technology, 61, 301-306(2010).
Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoon, J., and Presser, V.,"Water desalination via capacitive deionization: what is it and what can we expect from it?", Energy Environ. Sci., 8, 2296-2319(2015).
Vasiljevic, N., Wood, M., Heard, P.J., and Schwarzacher, W.,"The Influence of Specific Anion Adsorption on the Surface Roughness of Electrodeposited Polycrystalline Cu Films", Journal of The Electrochemical Society, 157, D193(2010).
Wang, J., Angnes, L., Tobias, H., Roesner, R.A., Hong, K.C., Glass, R.S., Kong, F.M., and Pekala, R.W.,"Carbon aerogel composite electrodes", Analytical Chemistry, 65, 2300-2303(1993).
Wang, S., Zhang, H., Sun, Z., and Zheng, L.,"Treatment of phosphate-containing wastewater with zeolite", Materials Protection(China), 36, 55-56(2003).
Wang, Z., Shi, M., Li, J., and Zheng, Z.,"Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon", Journal of Environmental Sciences, 26, 519-528(2014).
Wu, T., Wang, G., Dong, Q., Qian, B., Meng, Y., and Qiu, J.,"Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode", Electrochimica Acta, 176, 426-433(2015).
Yan, C., Zou, L., and Short, R.,"Polyaniline-modified activated carbon electrodes for capacitive deionisation", Desalination, 333, 101-106(2014).
Yang, J., Zou, L., and Choudhury, N.R.,"Ion-selective carbon nanotube electrodes in capacitive deionisation", Electrochimica Acta, 91, 11-19(2013).
Zhang, L.L., and Zhao, X.,"Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531(2009).
Zuthi, M., Guo, W., Ngo, H., Nghiem, L., and Hai, F.,"Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes", Bioresource technology, 139, 363-374(2013).
吴志坚, 刘海宁, and 张慧芳."离子强度对吸附影响机理的研究进展", (2010).
李岳青."利用碳氣凝膠紙對硝酸根離子進行電容去離子之研究", 中央大學環境工程研究所學位論文, 1-84(2015).
林弘仁."製備活性碳電極於電容去離子技術之應用", (2012).
許琇茹."利用碳氣凝膠紙電容吸附處理水中銨離子之研究; The removal of ammonium ion via the capacitive deionization using the carbon aerogel electrodes", (2016).
游絢博."陽極單軸間歇運動下之直流, 脈衝微電析鎳", (2000).
廖仲洲."利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討", 中央大學環境工程研究所學位論文, 1-102(2006).
鄭為元."無機鹽類在碳氣凝膠電容去離子系統中之競爭吸附; A study of competitive adsorption of inorganic salts by carbon aerogel-based capacitive deionization system", (2016).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2017-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明