國立中央大學 107 學年度碩士班考試入學試題

所别: 天文研究所 碩士班 不分組(一般生)

共2頁 第/頁

科目: 應用數學

本科考試禁用計算器

*請在答案卷(卡)內作答

1. (Total 15%) The Gamma function is defined as

$$\Gamma(\mathbf{x}) \equiv \int_0^\infty t^{x-1} e^{-t} dt$$

- (i) (10%) Prove $\Gamma(x+1) = x\Gamma(x)$
- (ii) (5%) Calculate $\Gamma(\frac{5}{2})$
- 2. (Total 20%) If \vec{r} is the position vector and \vec{a} is a constant vector in three dimensional space, that is $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$ and $\vec{a} = a_x\hat{x} + a_y\hat{y} + a_z\hat{z}$ where $\hat{x}, \hat{y}, \hat{z}$ are the unit vectors of x, y, z axis respectively.
 - (i) (10%) What kind of surface is if $(\vec{r} \vec{a}) \cdot \vec{r} = 0$ and what is its surface area?
 - (ii) (10%) Calculate $|\nabla[(\vec{r} \vec{a}) \cdot \vec{r}]|$ on the surface where ∇ is gradient operator.
- 3. (Total 15%) Show that $\tan(x+iy) = \frac{\sin(2x) + i\sinh(2y)}{\cos(2x) + \cosh(2y)}$
- 4. (Total 20%) The expected value of a probability distribution P(x) is defined as $\langle f(x) \rangle = \int f(x) P(x) dx$. For the probability distribution $P(x) = A \frac{1}{\sqrt{1-x^2}}$ where
- -1 < x < 1 and A is the normalization constant to make $\int P(x)dx=1$, find
 - (i) (5%) The normalization constant A
 - (ii) (5%) Mean value $\mu \equiv \langle x \rangle$
 - (iii) (5%) Variance $\sigma^2 \equiv \langle (x \langle x \rangle)^2 \rangle$
 - (i) (5%) The probability between $\mu \sigma$ and $\mu + \sigma$ where $\sigma = \sqrt{\sigma^2}$

参考用

國立中央大學 107 學年度碩士班考試入學試題

所別: 天文研究所 碩士班 不分組(一般生)

共2頁 第2頁

科目: 應用數學

本科考試禁用計算器

*請在答案卷(卡)內作答

5. (Total 15%) The solution of the differential equation

 $(1-x^2)y''-2xy'+l(l+1)y=0$ can be written as a power series as $y=\sum_{n=0}^{\infty}c_nx^n$

(i) (10%) Show that

$$c_{n+2} = -\frac{(l-n)(l+n+1)}{(n+2)(n+1)}c_n$$

(ii) (5%) Find the following solutions:

(a)
$$c_0 = 1$$
, $c_1 = 0$, $l = 0$; (b) $c_0 = 1$, $c_1 = 0$, $l = 2$; (c) $c_0 = 0$, $c_1 = 1$, $l = 1$;

(d)
$$c_0 = 0$$
, $c_1 = 1$, $l = 3$

6. (Total 15%) A is an $n \times n$ Hermitian matrix with orthonormal eigenvectors

 $|x_i\rangle$ and the corresponding real eigenvalues $\lambda_1 \le \lambda_2 \le \lambda_3 \cdots \le \lambda_n$. Show that a unit

vector $|y\rangle$

$$\lambda_1 \leq \langle y | A | y \rangle \leq \lambda_n$$

Hint: You may consider $|x_i\rangle$ as a column matrix as $\begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{in} \end{pmatrix}$ and its adjoint

 $\langle x_i | = (|x_i\rangle)^{\dagger}$ as a raw matrix as $(x_{i1}^*, x_{i2}^*, \dots, x_{in}^*)$.

參考用