所別: 資工類

共6頁 第1頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

多重選擇題 (每題5分、每一選擇答對給1分、答錯倒扣1分、不答0分)

I. 離散數學(50分)

- 1. Which of the following are correct ways to verify if two compound propositions p and q are logically equivalent?
 - A. Show that $p \leftrightarrow q$ is a tautology.
 - B. Show that $p \leftrightarrow q$ is a contradiction.
 - C. Show that p and q contain the same truth values as each other in some rows of their truth tables.
 - D. Use equivalence laws to derive p from q.
 - E. Use equivalence laws to derive q from p.
- 2. For two arbitrary infinitely countable sets A and B, which of the following statements are true.
 - A. Both 2^A and 2^B are uncountable.
 - B. A B can be ϕ .
 - C. A B can be finite.
 - D. A B can be infinitely countable.
 - E. A B can be uncountable.
- 3. Which of the following statements are correct?
 - A. If |A| = r and |B| = n, there are n^r different functions from A to B.
 - B. There are $\binom{13}{3}$ possible non-negative integer solutions to the equation: $x_1 + x_2 + x_3 + x_4 = 10$.
 - C. There are $\binom{n}{r}$ bit strings of length n containing exactly r 1's.
 - D. There are 23 ways to distribute 10 items to 4 identical empty boxes.
 - E. There are $\binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13}$ ways to distribute hands of 13 cards to each of four players from the standard deck of 52 cards.
- 4. Which of the following statements are correct?
 - A. A pseudograph may contain edges that connect a node to itself.
 - B. The number of nodes for W_n is n + 1.
 - C. The number of edges for *n*-Cubes Q_n is $(n-1)2^n$.
 - D. The sum of the degree for all nodes in an undirected graph is even.
 - E. A path with length n in a simple graph of n nodes must contain a loop.
- 5. A poset with the relation R is represented by the Hasse diagram in Figure 1. We can conclude that:

注意:背面有試題

参考用

所別: 資工類

共分頁第三項

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- A. R is a total order.
- B. R is not transitive.
- C. R is reflexive.
- D. The least upper bound of $\{a, c\}$ is d.
- E. R is a lattice.

Figure 1. The Hasse diagram of R

- 6. Which of the following statements are true?
 - A. If there exists an 1-to-1 mapping from set A to B, then |A| = |B|.
 - B. If there exists an equivalent relation on a set, a partition on that set always can be formed.
 - C. If mathematical induction can be applied on a set of predicates, these predicates can form a total-ordered set.
 - D. $\forall n > 0$, if number of length-n paths are all the same in graph G and H, then G is isomorphic to H.
 - E. When proving f is O(g), we must find the smallest c,k such that $\forall x > k$: $f(x) \le cg(x)$.
- 7. Analyze the time complexity of the following procedure P. Suppose P, Q, and R are all procedures. Q will take \sqrt{m} steps to process a length-m array into 4 length-m/4 arrays, B_1 , B_2 ,..., B_4 ; R will take $2\sqrt{m}$ steps to merge 2 size m arrays, where m is the size of input arrays. Each statement line in and

outside the loop counts 1 step.

Procedure $P(A[a_1, a_2, ..., a_n])$

 B_{I_1} B_{2} ,... B_{4} are initially empty arrays.

1. if *n*<4 exit.

2. call Q(A); /* and get $B_{I_1} B_2, ... */$

3. call $P(B_1)$;

4. call $P(B_4)$;

5. call $R(B_1, B_4)$;

6.return;

Suppose n is a number of power of 4, What of the following options are true about the number of steps (p(n)) and complexity (C_p) of the procedure P in the question above? (C_n, D) are constants

A.
$$p(n) = 2p(n/4) + Cn^{1/2} + D$$

B.
$$p(n) = 4p(n/4) + Cn^{1/4} + D$$

C.
$$C_p = \theta(n \log n)$$

D.
$$C_p = \theta(\sqrt{n}\log n)$$

E.
$$C_p = \theta(\sqrt{n})$$

参考用

所別: 資工類

共6頁 第3頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- 8. Existing 2 sets A and B, |A| = 3, |B| = 5, which of the following options are true?
 - A. the number of possible functions from A to B is 2^{15} .
 - B. the number of possible 1-to1 functions from A to B is 5³.
 - C. the number of possible onto functions from A to B is 0.
 - D. the number of possible binary relations on $A \times B$ is 2^{15} .
 - E. the number of possible symmetric binary relations on $A \times B$ is 2^{10} .
- 9. Suppose x,y represents people. Let S(x,y) be the predicate of "x is a senior of y," F(x,y) be the predicate of "x is a friend of y," Choose the correct logic statement(s) which have the same meaning as the sentence ---At least one of any person's senior is his friend.
 - A. $\forall \mathbf{x} (\forall \mathbf{y}, F(\mathbf{y}, \mathbf{x}) \rightarrow S(\mathbf{y}, \mathbf{x})).$
 - B. $\exists x (\forall y, (S(x,y) \land F(y,x)).$
 - C. $\forall x (\forall y, (S(y,x) \rightarrow F(x,y))).$
 - D. $\exists x (\forall y, F(y,x) \lor S(y,x))$.
 - E. none of the above.
- 10. What equations are true when using generating function to solve the recurrence series: $a_n = 6a_{n-1} 9a_{n-2}$, $a_0 = 1$, $a_1 = 6$, which of the followings are true?

A.
$$g(z) = 1/(1-3z)^2$$

B.
$$g(z) = 1/(1-3z^2)$$

C.
$$g(z) = \frac{1+6z}{(1-3z)^2}$$

D.
$$a_n = (7n+1)3^n$$

E.
$$a_n = (n+1)3^n$$

II. 線性代數(50分)

- 11. Concept of linear independent.
 - A. The linear system Ax = b has unique solution for b, then the columns of A are linearly independent.
 - B. The columns of the change-of-coordinate matrix P are linearly independent.
 - C. The subset of a linearly-dependent vector set is linearly dependent.
 - D. If A is diagonalization, then A has linearly-independent columns.
 - E. If $A^{T}A$ is invertible, then A has linearly-independent columns.
- 12. If A is diagonalizable and has eigenvalue λ , then
 - A. A^{-1} has eigenvalue $1/\lambda$.
 - B. A^2 has eigenvalue 2λ .

共分頁 所別: 資工類 離散數學與線性代數 本科考試禁用計算器 *請在答案卷(卡)內作答 If **B** has eigenvalue λ , then **A** is similar **B**. A has an eigenvector basis to span an eigenspace of A. $A = PDP^{-1}$, where matrices P and D are unique. 13. Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{w_1, \dots, w_p\}$ and let $\{v_1, \dots, v_p\}$ v_q } be an orthogonal basis for W^{\perp} . $\{w_1, \dots, w_p, v_1, \dots, v_q\}$ is an orthogonal set. B. Span $\{w_1, ..., w_p, v_1, ..., v_q\} = \mathbb{R}^n$. $\dim W + \dim W^{\perp} = n$. C. D. $x \in W \cup W^{\perp}$ for any x in \mathbb{R}^n . $W \cap W^{\perp} = \phi$ (empty set). 14. If A_{nxn} can be spectral decomposed, $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + ... + \lambda_m u_m u_m^T$, where λ_i and u_i are eigenvalues and eigenvectors of A. A. A can be any square matrix. В. C. If λ_i is the least eigenvalue, then $\lambda_i \geq 0$. D. All λ_i are different. E. All u_i are orthonormal. 15. Find a singular value decomposition $A = U^{\Sigma} V^{T}$ with U and V being both orthogonal matrices, where $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$. Which values are **not** in U or Vmatrices? A. $1/\sqrt{3}$. B. $1/\sqrt{10}$. $2/\sqrt{10}$. C. -2/3. D. E. 16. The following is the pseudo-code for Gauss-Jordan method. for k=1 to n { for j=k+1 to n+1 $a_{kj} = a_{kj}/X$ for i=1 to n; i is not equal to k for j=k+1 to n+1 $a_{ij}=a_{ij}-(a_{ik})(a_{kj})$ Which of the following statements are correct? the solution is stored in a(i, n), i=1 to n

the solution is stored in a(n+1, i), i=1 to n

所別: 資工類

共公頁 第一頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- C. \mathbf{X} is \mathbf{a}_{nn}
- D. X is a_{kk}
- E. the solution is stored in a(i, n+1), i=1 to n
- 17. Which of the following transformations are not linear?
 - A. S: the map in \mathbb{R}^3 which rotates points about the x1-axis by an angle $\pi/2$.
 - B. $T[x_1,x_2,x_3]^T = [x_1+1, x_2-1, x_3]^T$
 - C. $T[x_1,x_2]^T = [x_1-x_2, x_1+x_2]^T$
 - D. $T(ax^2+bx+c)=(a+b)x+(b+c)$
 - E. $T[x]=e^x$
- 18. Select the value(s) of k so that the matrix

$$\begin{bmatrix} k & 1 \\ k & k \end{bmatrix}$$

is not invertible.

- A. 1
- B. -1
- C. 0
- D. no solution
- E. k can be any value.
- 19. Given the following system of linear equations:

$$x_1 + 2x_2 - x_3 + x_4 = 0$$

-x₁ - 2x₂ + 3x₃ + 5x₄ = 0
-x₁ - 2x₂ - x₃ - 7x₄ = 0

Which vectors form a basis for the solutions to the system?

A.
$$\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$$
 B. $\begin{bmatrix} -1\\-2\\-1\\-7 \end{bmatrix}$ C. $\begin{bmatrix} 1\\2\\-1\\1 \end{bmatrix}$ D. $\begin{bmatrix} -1\\-2\\3\\5 \end{bmatrix}$ E. $\begin{bmatrix} -4\\0\\-3\\1 \end{bmatrix}$

所別: 資工類

共6頁 第2頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

20. The following is the pseudo code for LU Decomposition.

for
$$i=1, 2, 3, ..., a$$

 $L_{i1} = A_{i1}$
for $j=b, ..., n$
 $U_{1j} = \frac{A_{1j}}{L_{11}}$

for i=j, j+1, ..., n

$$L_{i1} = A_{ij} - \sum_{k=1}^{c} L_{ik} U_{kj}$$

for k=j, j+1, ..., n

$$U_{jk} = (A_{jk} - \sum_{i=1}^{d} L_{ji}U_{ik})/L_{jj}$$

}

$$L_{nn} = A_{nn} - \sum_{k=1}^{n-1} L_{nk} X$$

Which of the follow statements are correct?

- A. a=n-1
- B. **b**=1
- C. *c=j-*1
- D. d=j-1
- E. $X=U_{kn}$