國立中央大學 107 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共1頁 第1頁

數學系碩士班 應用數學組(一般生) 數學系碩士班 應用數學組(在職生)

科目: 線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

Instructions: Do all problems. Show your work. Notations: V is a vector space over \mathbb{R} or \mathbb{C} , $P_n(\mathbb{R})$ denotes the set of all polynomials with real valued coefficients and degree at most n.

1. Let
$$A = \begin{pmatrix} -1 & 3 & -1 \\ -1 & 2 & 0 \\ 1 & -3 & 3 \end{pmatrix}$$
.

- (a) Find the minimal polynomial of A. (10%)
- (b) Explain why A is diagonalizable or not diagonalizable. (5%)
- (c) Find a Jordan canonical form J of A. (5%)
- (d) Find a matrix Q such that $Q^{-1}AQ = \hat{J}$. (5%)
- 2. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the map defined by

$$T(f(x)) = f''(x) + f'(x) - f(x).$$

- (a) Show that T is a linear map. (6%)
- (b) Find the matrix $[T]_{\beta}$ representing T with respect to the standard ordered basis $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$. (6%)
- (c) Find the inverse matrix of $[T]_{\beta}$, if it exists. (7%)
- (d) Find T^{-1} , if it exists. (6%)
- 3. Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be the linear operator defined by $T(z_1, z_2, z_3) = (z_1, 2z_2, -z_3)$. Express T^{-1} as a polynomial of T. Prove your answer. (10%)
- 4. A linear operator $P: V \to V$ is called a projection if $P^2 = P$. Prove that if P is a projection, then $V = \text{null } P \oplus \text{range } P$. (10%)
- 5. Let $V = P_n(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_{-1}^1 x^2 f(x) g(x) dx$, and consider the subspace $P_3(\mathbb{R})$ with the standard ordered basis $\beta = \{1, x, x^2, x^3\}$. Use the Gram-Schmidt process to replace β by an orthogonal basis $\{v_1, v_2, v_3, v_4\}$ for $P_3(\mathbb{R})$. (10%)
- 6. Suppose V is finite-dimensional and $T:V\to V$ is a linear operator. Prove that $V=\operatorname{null} T+\operatorname{range} T$ if and only if $\operatorname{null} T\cap\operatorname{range} T=\{0\}.$ (10%)
- 7. Let $U = \{ p \in P_4(\mathbb{R}) : p'(2) = 0 \}$. Find a basis of U. (10%)