博碩士論文 101382002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.221.11.166
姓名 鄧源昌(Yuan-Chang Deng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 廣域山崩即時預報系統之研究
(Development of a real-time forecasting system for regional landslide hazard assessment under extreme rainfall events)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立極端雨量下廣域山崩即時預報系統,運用美國地質調查所開發之TRIGRS定值法山崩潛勢分析程式,整合相關輸入參數以分析降雨入滲時邊坡土層即時孔隙水壓激發狀態及對應之安全係數,並透過即時動態展示圖形介面,明瞭暴雨事件過境期間所處關心區域之即時山崩潛勢及警戒指標動態情形,協助防救災決策之用。整體山崩預報核心為TRIGRS山崩潛勢分析結果,其版本與邊界模式之使用正確性將影響山崩預報可信度,故須釐清TRIGRS版本差異、參數設定,與模式適用情形及準確率。在水文地質輸入參數部分,基於土層地質隨機分布性及地質鑽探不足等因素,致使難以透過地質鑽探或現地試驗來獲取具有代表性之水文地質參數。因而整合遺傳演算法之最佳化技術耦合TRIGRS模式進行分析參數反算,並進行逆分析參數研究,試圖尋找較合適參數組合,供下一場颱風事件來臨時正算預測使用。
經重新推導與勘誤TRIGRS解析解,釐清理論對應不同版本程式差異,系統採取TRIGRS 2008飽和有限邊界模式作為山崩潛勢預報核心。最佳化參數反算分析之參數研究中,在桃芝颱風率定與下一場敏督利颱風事件驗證下,最佳化反算分區設定為地質分區,引入擴散係數改良與反算後凝聚力修正之最佳化模組可產製具防災實務能力之水文地質參數圖層。本研究成功建置廣域即時山崩預報系統,整合上述研究結果並可運行即時雨量與莫拉克颱風事件下小林村研究區域之自動山崩潛勢動態分析展示,可初步供防災機構參考使用。
摘要(英) This study establishes a real-time forecasting system for regional landslide hazard assessment under extremely rainfall events. The system uses TRIGRS to evaluate the factor of safety of regional slopes in rainfall processes and to show variations of real-time susceptibility through ArcGIS platform. It can help researchers to realize susceptibility and alert indexes of the assigned slope and to make decisions of disaster prevention and mitigation.
TRIGRS model is the core of the landslide prediction system. Different versions and boundary settings of TRIGRS influence the credibility of forecast. It’s necessary to clarify the difference of versions, parameter settings, applicable conditions, and precision.
The hydrologic and mechanical parameters of landslide model are difficult to evaluate from the existing experiment due to random distribution of soil composition and data deficiencies. This research developes the reverse optimization analysis model to acquire reasonable parameters for landslide forecast under next typhoon. The optimization model combines Real-coded Genetic Algorithm with TRIGRS.
After rederiving the analytical solution of TRIGRS and clarifying the relation between theory and program, the system uses TRIGRS 2008 with initial wet condition and finite boundary setting as the core of landslide forecast. The results of the reverse optimization analysis show that the practical parameters layers provided by the module with geology divisions, the modification of diffusivity coefficient, and final cohesion increase. The real-time forecasting system for regional landslide hazard assessment under extremely rainfall events has successfully established. It can operate completely automated landslide susceptibility analysis and visual display for Xiaolin village region under Morakot typhoon. It’s useful for disaster prevention unit.
關鍵字(中) ★ 山崩
★ 最佳化
★ TRIGRS
★ 即時預報系統
★ 參數逆分析
★ 小林村
關鍵字(英) ★ Landslide
★ Optimization
★ TRIGRS
★ Real-time forecasting system
★ Reverse analysis
★ Xiaolin village
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與流程 4
1.3 論文架構 6
第二章 文獻回顧 7
2.1 廣域降雨誘發山崩潛勢分析 7
2.1.1 統計法 7
2.1.2 穩態山崩潛勢分析 10
2.1.3 暫態山崩潛勢分析 12
2.2 參數逆分析 19
2.3 山崩即時預報系統 26
第三章 TRIGRS分析模型研究 34
3.1 TRIGRS模型理論推導 35
3.1.1 一維未飽和入滲方程式 35
3.1.2 三維理查式方程式 38
3.1.3 TRIGRS三維理查式方程式 41
3.1.4 TRIGRS 解析解 43
3.1.5 TRIGRS無限邊坡理論 51
3.2 TRIGRS程式運算機制 54
3.2.1 TRIGRS 運算主流程 55
3.2.2 TRIGRS 總壓力水頭計算流程 56
3.3 TRIGRS程式驗證 60
3.3.1 TRIGRS 2008無限邊界驗證 60
3.3.2 TRIGRS 2008有限邊界驗證 62
3.3.3 TRIGRS 2002 與2008差異 64
3.3.4 TRIGRS 2008無限與有限邊界差異 74
3.4 TRIGRS總壓力水頭解析解研究 77
3.4.1 總壓力水頭穩態項 77
3.4.2 總壓力水頭暫態項解析 79
3.4.3 暫態壓力水頭物理現象解析 90
3.4.4 總壓力水頭綜合討論 93
3.5 案例參數研究 95
3.5.1 雨型固定下參數研究 95
3.5.2 不同雨型下參數研究 115
3.6 TRIGRS程式應用注意事項 120
3.6.1 TRIGRS手冊限制 120
3.6.2 本研究建議事項 121
第四章 山崩潛勢分析資料庫 123
4.1 研究區域基本資訊 123
4.2 研究區域地質 126
4.3 水文參數 128
4.4 強度參數 129
4.5 土壤厚度與初始地下水位 130
4.6 水系與道路圖層 132
4.7 MySQL雨量資料庫與圖層 133
4.7.1 率定颱風–桃芝颱風 137
4.7.2 驗證颱風–敏督利颱風 138
4.7.3 驗證颱風–莫拉克颱風 140
4.8 山崩目錄 142
第五章 分析參數最佳化反算 144
5.1 遺傳演算法簡介 144
5.2 分析參數最佳化數學模型 145
5.2.1 分析變數設定 145
5.2.2 TRIGRS分析成果評估 148
5.2.3 適應函數設定 150
5.2.4 最佳解評估標準 152
5.3 TRIGRS核心運算速度改良 153
5.3.1 程式結構調整 153
5.3.2 多核心技術 155
5.3.3 分析結果驗證與效率比對 156
5.4 最佳化參數逆分析流程 158
5.4.1 參數設定 159
5.4.2 隨機產生初始族群 161
5.4.3 遺傳演算法之世代演化 162
5.4.4 下一世代演算個體確立 165
5.4.5 收斂準則暨最佳化內部參數 166
5.5 最佳化參數逆分析改良因子 167
5.5.1 水文擴散係數修正 167
5.5.2 凝聚力提升策略 168
5.5.3 山崩臨界累積雨量設定 169
5.6 改良模組案例率定測試 171
5.6.1 水文擴散係數修正測試 171
5.6.2 降雨前山崩修正測試 173
5.6.3 山崩臨界累積雨量前崩塌修正 185
5.7 案例率定結果驗證 190
5.8 案例最佳參數組合探討 195
5.8.1 地質與桃芝山崩反算區 195
5.8.2 地質反算分區 206
5.9 小結 214
第六章 廣域即時山崩預報系統建置 217
6.1 整體系統開發環境 219
6.2 山崩潛勢分析程式改良 219
6.3 自動定時式分析架構 224
6.3.1 區域雨量圖層產製系統 224
6.3.2 TRISHAL即時分析程式 238
6.3.3 山崩潛勢分析圖層展示系統 244
6.4 山崩預報系統運行操作 249
6.4.1 系統運作需求 249
6.4.2 非自動定時式分析 252
6.4.3 自動定時式分析 260
第七章 結論與建議 274
7.1 結論 274
7.2 建議 275
參考文獻 276
附錄A 高屏溪流域之雨量測站列表 A-1
附錄B 最佳化逆分析參數研究 B-1

參考文獻 1. 王姵兮,「應用TRIGRS模式評估降雨及入滲誘發池上山棕寮地滑之影響研究」,碩士論文,國立中正大學應用地球物理研究所,嘉義(2007)。
2. 吳佳郡,「降雨誘發山崩之潛感分析初探」,碩士論文,國立暨南大學土木工程學系,南投(2006)。
3. 李明熹,「土石流發生降雨警戒分析及其應用」,博士論文,國立成功大學水利及海洋工程研究所,台南(2006)。
4. 李錫堤、董家鈞、林銘郎,「小林村災變之地質背景探討」,地工技術,第122期,第87-94頁(2009)。
5. 呂昱達,「橋梁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程學系,中壢(2011)。
6. 何瑞益,「淺層地滑即時預警模式之研發」,博士論文,國立台灣海洋大學河海工程學系,基隆(2011)。
7. 林淑媛,「地形地質均質區劃分與山崩因子探討」,碩士論文,國立中央大學應用地質研究所,中壢(2003)。
8. 林衍丞,「廣域山崩潛感分析模型-水力參數逆分析」,碩士論文,國立中央大學應用地質研究所,中壢(2009)。
9. 林彥享、鄭錦桐、魏倫瑋、林錫宏、紀宗吉、楊坤霖,「豪雨引致山崩之Web-GIS災情預警系統發展」,2012 台灣地理資訊學會年會暨學術研討會,台北(2012)。
10. 陳盈赬,「曾文水庫集水區之地形幾何特性與山崩分布關係之研究」,碩士論文,國立成功大學資源工程學系,台南(2007)。
11. 陳嬑璇、譚志豪、冀樹勇,「不同廣域降雨促崩分析模式於山崩預警應用之探討」,第十四屆大地工程學術研究討論會,桃園,台灣(2011)。
12. 陳麒任,「考慮不確定性之降雨誘發山崩逆分析」,碩士論文,國立中央大學應用地質研究所,中壢(2011)。
13. 財團法人中興工程顧問社,「易淹水地區上游集水區地質調查及資料庫建置(第2期98年度)—集水區水文地質對坡地穩定性影響之調查評估計畫(2/3)」,經濟部中央地質調查所,台北(2010a)。
14. 財團法人中興工程顧問社,「集水區水文地質對坡地穩定性影響之評估-廣域降雨促崩分析模式參數最佳化研究」,財團法人中興工程顧問社研究報告,台北(2010b)。
15. 張弼超,「運用羅吉斯迴歸法進行山崩潛感分析 -以臺灣中部國姓地區為例」,碩士論文,國立中央大學應用地質研究所,中壢(2005)。
16. 張舜孔,「混合型演算法於邊坡破壞與土壤液化」,博士論文,國立成功大學土木工程研究所,台南(2010)。
17. 莊緯璉,「運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例」,碩士論文,國立中央大學應用地質研究所,中壢(2005)。
18. 許佳鳳,「整合應用定率法評估降雨引致崩塌潛勢與防災預警技術之建立」,博士論文,國立台灣海洋大學河海工程學系,基隆(2011)。
19. 黃春銘,「運用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例」,碩士論文,國立中央大學應用地質研究所,中壢(2005)。
20. 游佳靜,「最佳數值搜尋原理應用於降雨誘發之山崩潛勢評估」,碩士論文,長榮大學土地管理與開發學系碩士班,台南(2015)。
21. 楊豐榮,「山岳隧道開挖湧水及其對鄰近環境之影響」,博士論文,國立成功大學資源工程學系,台南(2009)。
22. 楊曄芬,「應用基因演算法及平行禁忌搜尋混合模式於自動化分類及山崩潛感分析」,博士論文,國立中興大學土木工程學系,台中(2010)。
23. 楊婉君,「坡面型土石流潛勢分析模式」,碩士論文,國立屏東科技大學水土保持系,屏東(2014)。
24. 鄧源昌,「廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例」,碩士論文,國立中央大學土木工程學系,中壢(2012)。
25. 鄧源昌、呂昱達、黃俊鴻,「廣域山崩之最佳化分析-以莫拉克風災小林村鄰近地區為例」,第十五屆大地工程學術研究討論會,雲林,台灣(2013)。
26. 鄭清江、譚志豪、鍾明劍、李錦發、費立沅,「莫拉克颱風降雨引致高屏地區邊坡淺層崩塌災害勘查與穩定性數值分析案例」,地工技術,第122期,第133-142頁(2009)。
27. 鄭錦桐、李璟芳、魏倫瑋、黃春銘、黃韋凱、楊鎧綸、張玉粦,「強化豪雨引致山崩之即時動態潛勢評估與警戒模式發展」,經濟部中央地質調查所期末報告,財團法人中興工程顧問社防災科技研究中心,台北(2014)。
28. 蔡至航,「降雨誘發山崩之逆分析及分析成果之評估指標探討」,碩士論文,國立暨南國際大學土木工程學系,南投(2014)。
29. 鍾明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程學系,中壢(2006)。
30. 鍾欣翰,「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,碩士論文,國立中央大學應用地質研究所,中壢(2008)。
31. 鍾意晴,「區域性山崩潛感分析方法探討-以石門水庫集水區為例」,碩士論文,國立中央大學地球物理研究所,中壢(2009)。
32. 譚志豪、陳嬑璇、顧承宇、冀樹勇、蘇泰維、李錦發、費立沅,「降雨誘發山崩災害之預警系統初步研究」,2008流域地質與坡地災害研討會,台北(2008)。
33. 譚志豪、陳嬑璇、冀樹勇、費立沅、李錦發、蘇泰維,「結合廣域降雨促崩模式及3S 技術之山崩災害預警系統初步建置」,第六屆海峽兩岸山地災害與環境保育學術研討會,台中,台灣(2008)。
34. 譚志豪、陳嬑璇、顧承宇、費立沅、李錦發、蘇泰維,「廣域山崩災害預警系統之初步建置」,中華民國地質學會與中國地球物理學會九十七年年會暨學術研討會,台南,台灣(2008)。
35. 譚志豪、許世孟、冀樹勇、蘇泰維、李錦發、費立沅,「流域山崩與水文地質特性之關聯研究」,2009流域地質與坡地災害研討會,台北(2009a)。
36. 譚志豪、鍾明劍、冀樹勇、蘇泰維、陳勉銘、費立沅,「流域水文地質特性調查及降雨誘發山崩模式分析」,2009流域地質與坡地災害研討會,台北(2009b)。
37. 譚志豪、呂昱達、冀樹勇、費立沅,「集水區降雨促崩潛勢分析」,地工技術,第129期,第77–88頁(2011)。
38. Alvioli, M., and Baum, R.L., “Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface,’’ Environmental Modelling & Software, Vol. 81, pp. 122-135 (2016).
39. Alvioli, M., Guzzetti, F., and Rossi, M., “Scaling properties of rainfall induced landslides predicted by a physically based model,’’ Geomorphology, Vol. 213, pp. 38-47 (2014).
40. Baum, R.L., Coe, J.A., Godt, J.W., Harp, E.L., Reid, M.E., Savage, W.Z., Schulz, W.H., Brien, D.L., Chleborad, A.F., McKenna, J.P., and Michael, J.A., “Regional landslide-hazard assessment for Seattle, Washington, USA,’’ Landslides, Vol. 2, pp. 266-279 (2005).
41. Baum, R.L., and Godt, J.W., “Early warning of rainfall-induced shallow landslides and debris flows in the USA,’’ Landslides, Vol. 7, pp. 259-272 (2010).
42. Baum, R.L., Godt, J.W., and Savage, W.Z., “Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration,’’ Journal of Geophysical Research, Vol. 115, F03013 (2010).
43. Baum, R.L., Savage, W.Z., and Godt, J.W., “TRIGRS - A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis,” USGS Open-file Report 02-424 (2002).
44. Baum, R.L., Savage, W.Z., and Godt, J.W., “TRIGRS - A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0,” USGS Open-file Report 2008-1159 (2008).
45. Beven, K.J., and Kirkby, M.J., “A physically-based, variable contributing area model of basin hydrology,” Hydrological Sciences Bulletin, Vol. 24, pp. 43-69 (1979).
46. Campbell, R.H., “Soil slopes, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California,” U.S. Geological Survey Professional Paper 851 (1975).
47. Cannon, S.H., Gartner, J.E., and Michael, J.A. “Methods for the emergency assessment of debris-flow hazards from basins burned by the fires of 2007, southern California,” U.S. Geological Survey Open File Report 2007–1384 (2007).
48. Carslaw, H.S., and Jaeger, J.C., Conduction of heat in solids, Oxford Univ. Press, New York (1959).
49. Cascini, L., Ciurleo, M., Nocera, S.D., and Gullà, G., “A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy,’’ Geomorphology, Vol. 241, pp. 371-381 (2015).
50. Cascini, L., Ciurleo, M., and Nocera, S.D., “Soil depth reconstruction for the assessment of the susceptibility to shallow landslides in fine-grained slopes,’’ Landslides, Vol. 14(2), pp. 459-471 (2017).
51. Chen, Y.L., Chen, D.H., Li, Z.C., and Haung, J.B, “Preliminary studies on the dynamic prediction method of rainfall-triggered landslide,” J. Mt. Sci., Vol. 13(10), pp. 1735-1745 (2016).
52. Chen, C.Y., Chen, T.C., Yu, F.C., and Lin, S.C., “Analysis of time-varying rainfall infiltration induced landslide,” Environmental Geology, Vol. 48(4-5), pp. 466-479 (2005).
53. Chien, L.K., Hsu, C.F., and Yin, L.C., ‘‘Warning model for shallow landslides induced by extreme rainfall,’’ Water, Vol. 7, pp. 4362-4384 (2015).
54. Chleborad, A.F., Baum, R.L., and Godt, J.W., “A prototype system for forecasting landslides in the Seattle, Washington, Area,” In Baum, R.L., Godt, J.W., and Highland, L.M. (Eds.) Engineering geology and landslides of the Seattle, Washington, area: Geological Society of America reviews in engineering geology, v. XX. Geological Society of America, Boulder, pp. 103-120 (2008).
55. Chung, C.F., and Fabbri, A.G., “Validation of spatial prediction models for landslide hazard mapping,” Natural Hazards, Vol. 30, pp. 451-472 (2003).
56. Ciurleo, M., Cascini, L., and Calvello, M., “A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils,’’ Engineering Geology, Vol. 223, pp. 71-81 (2017).
57. Deng, Y.C., Tsai, F., and Hwang, J.H., “Landslide characteristics in the Area of Xiaolin village during Morakot typhoon,” Arabian Journal of Geosciences, Vol. 9, No. 5, pp. 1-16 (2016).
58. Dietrich, W.E., and Montgomery, D.R., “A physically based model for the topographic control on shallow landsliding,” Water Resources Research, Vol. 30, pp. 1153-1171 (1994).
59. DOGAMI, “Oregon’s debris-flow warning system and how it works,” Oregon Department of Geology and Mineral Industries (2005).
60. Dominguez-Cuesta, M.J., Jimenez-Sanchez, M., and Berrezueta, E., “Landslides in the central coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment,” Geomorphology, Vol. 89, No. (3-4), pp. 358-369 (2007).
61. Duncan, J.M., “Landslides - Investigation and mitigation: Chapter 13 - Soil slope stability analysis,” Transportation Research Board Special Report 247, Washington, D.C., National Academy Press, pp. 337-371 (1966).
62. Federici, B., Bovolenta, R., and Passalacqua, R., “From rainfall to slope instability: An automatic GIS procedure for susceptibility analyses over wide areas,” Geomatics, Natural Hazards and Risk, Vol. 6(5-7), pp. 454-472 (2015).
63. Frattini, P., Crosta, G.B., Fusi, N., and Negro, P.D., “Shallow landslides in pyroclastic soils: A distributed modelling approach for hazard assessment,’’ Engineering Geology, Vol. 73, pp. 277-295 (2004).
64. Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W.H., and Harp, E.L., “Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework,’’ Engineering Geology, Vol. 102, pp. 214-226 (2008).
65. Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Massachusetts (1989).
66. Grelle, G., Soriano, M., Revellino, P., Guerriero, L., Anderson, M.G., Diambra, A., Fiorillo, F., Esposito, L., Diodato, N., and Guadagno, F.M., “Space–time prediction of rainfall-induced shallow landslides through a combined probabilistic/deterministic approach, optimized for initial water table conditions,’’ Bull. Eng. Geol. Environ., Vol. 73, pp. 877-890 (2014).
67. Harp, E.L., Michael, J.A., and Laprade, W.T., “Shallow landslide hazard map of Seattle, Washington,” In Baum R.L., Godt J.W., and Highland L.M. (Eds.) Engineering geology and landslides of the Seattle, Washington, area: Geological Society of America reviews in engineering geology, v. XX. Geological Society of America, Boulder, pp. 67-82 (2008).
68. Hoffmeister, R.J., Miller, D.J., Mills, K.A., Hinkle, J.C., and Beier, A.E., “GIS overview map of potential rapidly moving landslide hazards in western Oregon,” Oregon Department of Geology and Mineral Industries Interpretive Map Series IMS-22 (2002).
69. Holland, J.H., “Outline for a logical theory of adaptive system,” Journal of the Association for Computing Machinery, Vol. 3, pp. 297-314 (1962).
70. Iverson, R.M., “Sensitivity of stability analyses to groundwater data,” Proceeding of the 6th International Symposim on Landslides, pp. 451-457, Rotterdam, Neth. (1991).
71. Iverson, R.M., “Landslide triggering by rain infiltration,” Water Resources Research, Vol. 36, No. 7, pp. 1897-1910 (2000).
72. Keefer, D.K., Wilson, R.C., Mark, R.K., Brabb, E.E., Brown, W.M., Ellen, S.D., Harp, E.L., Wieczorek, G.F., Alger, C.S., and Zatkin, R.S., “Real-time landslide warning during heavy rainfall,” Science, Vol. 238(13), pp. 921-925 (1987).
73. Kim, H.S., Chung, C.K., Kim, S.R., and Kim, K.S, “A GIS-based framework for real-time debris-flow hazard assessment for expressways in Korea,” International Journal of Disaster Risk Science, Vol. 7, pp. 293-311 (2016).
74. Kim, J., Lee, K., Jeong, S., and Kim, G., “GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model,” Engineering Geology, Vol. 182, pp 63-78 (2014).
75. Lee, C.T., Huang, C.C., Lee, J.F., Pan, K.L., Lin, M.L., and Dong, J.J., “Statistical approach to storm event-induced landslides susceptibility,” Natural Hazards and Earth System Sciences, Vol. 8, No. 4, pp. 941-960 (2008).
76. Liao, Z., Hong, Y., Kirschbaum, D., Adler, R.F., Gourley, J.J., and Wooten, R., “Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina,” Natural Hazards, Vol. 58, pp. 325-339 (2011).
77. Liu, C.N., and Wu, C.C., “Integrating GIS and stress transfer mechanism in mapping rainfall-triggered landslide susceptibility,’’ Engineering Geology, Vol. 101(1-2), pp. 60-74 (2008a).
78. Liu, C.N., and Wu, C.C., “Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach,’’ Environmental Geology, Vol. 55, pp. 907-915 (2008b).
79. Meier, J., Moser, M., Datcheva, M., and Schanz, T., “Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria),’’ Acta Geotechnica, Vol. 8, pp. 355-371 (2013).
80. Michel, G.P., Goerl, R.F., and Kobiyama, M., “Critical rainfall to trigger landslides in Cunha River basin, southern Brazil,” Natural Hazards, Vol. 75(3), pp. 2369-2384 (2014).
81. Montrasio, L., “Stability analysis of soil-slip,” Second International Conference on Computer Simulation i Risk Analysis and Hazard Mitigation, Risk Analysis II, Bologna, Italy, October 11-12 (2000).
82. Montrasio, L., Valentino, R., and Losi, G.L., “Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale,” Nat. Hazard Earth Syst. Sci., Vol. 11, pp. 1927-1947 (2011).
83. Montrasio, L., Valentino, R., and Terrone, A., “Application of the SLIP Model,” Procedia Earth and Planetary Science, Vol. 9, pp. 206-213 (2014).
84. O’ Loughlin E.M., “Prediction of surface saturation zone in Watural catchments by topographic analysis,” Water Resources Research, Vol. 22, pp. 794-804 (1986).
85. Pack, R.T., Tarboton, D.G., and Goodwin, C.N., “The SINMAP approach to terrain stability mapping,” The 8th International Congress of the International Association of Engineering Geology and the Environment, Vancouver, British Columbia, Canada, September 21-25, pp. 1157-1165 (1998).
86. Pack, R.T., Tarboton, D.G., and Goodwin, C.N.,“Assessing terrain stability in a GIS using SINMAP,” 15th Annual GIS Conference, GIS 2001, Vancouver, British Columbia, February 19-22 (2001).
87. Pellicani, R., Frattini, P., and Spilotro, G., ‘‘Landslide susceptibility assessment in Apulian Southern Apennine: Heuristic vs. statistical methods,’’ Environmental Earth Sciences, Vol. 72, pp. 1097-1108 (2014).
88. Radbruch-Hall, D.H., Colton, R.B., Davies, W.E., Lucchitta, I., Skipp, B.A., and Varnes, D.J., “Landslide overview map of the conterminous United States,” U.S. Geological Survey Professional Paper 1183 (1982).
89. Richards, L.A., “Capillary conduction of liquids through porous mediums,” Physics, Vol. 1, pp. 318-333 (1931).
90. Salciarini, D., Godt, J.W., Savage, W.Z., Baum, R.L., and Conversini, P., “Modeling landslide recurrence in Seattle, Washington, USA,’’ Engineering Geology, Vol. 102, pp. 227-237 (2008).
91. Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., and Michael, J.A., “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy,” Landslides, Vol. 3(3), pp. 181-194 (2006).
92. Savage, W.Z., Godt, J.W., and Baum, R.L., “A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration,” In Rickenmann, D., and Chen, C. (Eds.), Debris-flow hazards mitigation: Mechanics, prediction and assessment: Rotterdam, Millpress, pp. 179-187 (2003).
93. Savage, W.Z., Godt, J.W., and Baum. R.L., “Modeling time-dependent areal slope stability,” Proceeding of the 9th International Symposim on Landslides, London, Vol. 1, pp. 23-26 (2004).
94. Segoni, S., Leoni, L., Benedetti, A.I., Catani, F., Righini, G., Falorni, G., Gabellani, S., Rudari, R., Silvestro, F., and Rebora, N., “Towards a definition of a real-time forecasting network for rainfall induced shallow landslides,” Nat. Hazards Earth Syst. Sci., Vol. 9, pp. 2119-2133 (2009).
95. Sengupta, A., and Upadhyay, A., “Locating the critical failure surface in a slope stability analysis by genetic algorithm,’’ Applied Soft Computing, Vol. 9, pp. 387-392 (2009).
96. Sorbino, G., Sica, C., and Cascini, L., “Susceptibility analysis of shallow landslides source areas using physically based models,’’ Natural hazards, Vol. 53, pp. 313-332 (2010).
97. Stehman, S.V, “Selecting and interpreting measures of thematic classification accuracy,” Remote Sensing of Environment, Vol. 62(1), pp. 77-89 (1997).
98. Taigbenu, A.E., The green element method, Kluwer Academic, Bulawayo (1999).
99. USGS, “A NOAA–USGS demonstration flash-flood and debris-flow early-warning system,” U.S. Geological Survey Fact Sheet 2005-3104 (2005).
100. Venmarcke, E.H., “Reliability of earth slopes,” Journal of Geotechnical Engineering Division, Vol. 103(11), pp.1227-1246 (1977).
101. Vieira, B.C., Fernandes, N.F., and Filho, O.A., “Shallow landslide prediction in the Serra do Mar, Sao Paulo, Brazil,’’ Nat. Hazards Earth Syst. Sci., Vol. 10, pp. 1829-1837 (2010).
102. Vorpahl, P., Elsenbeer, H., Märker, M., and Schröder, B., ‘‘How can statistical models help to determine driving factors of landslides?,’’ Ecological Modelling, Vol. 239, pp. 27-39 (2012).
103. Wong, A.C.W., Ting, S.M., Shiu, Y.K., and Ho, K.K.S, “Latest developments of Hong Kong’s landslip warning system,” World Landslide Forum 3, Beijing, China, June 2-6 (2014).
104. Yu, Y.F., Lam, J.S., and Siu, C.K., “Interim report on review of landslip warning criteria 2003 (Special Project Report SPR 4/2003),” Geotechnical Engineering Office, Hong Kong (2003).
105. Zhuang, J., Peng, J., Wang, G., Iqbal, J., Wang, Y., Li, W., Xu, Q., and Zhu, X., “Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan’an, China, using the TRIGRS model,” Earth Surface Process and Landforms, Vol. 42, pp. 915-927 (2017).
106. Zizioli, D., Meisina, C., Valentino, R., and Montrasio, L., “Comparison between different approaches to modeling shallow landslide susceptibility: A case history in Oltrepo Pavese, Northern Italy,” Nat. Hazard Earth Syst. Sci., Vol. 13, pp. 43-69 (2013).
107. Zolfaghari, A.R., Heath, A.C., and McCombie, P.F., “Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis,’’ Computers and Geotechnics, Vol. 32, pp. 139-152 (2005).

指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明