博碩士論文 104223010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.129.13.201
姓名 羅煒勝(Wei-Shang Lo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以綠色化學合成有機金屬骨架材料及其酵素複合質料之化學生物學探討
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文包含三個部分,研究主題為以綠色化學合成金屬有機骨架材(Metal-Organic Frameworks, MOFs)及其酵素複合質料之化學生物學探討,在第一部份的研究中,我們提出原位創新合成法可較有效的限制酵素的構型,進而提高其生物活性上的穩定,在此酵素構型被侷限於MOFs中之概念下,本研究以過氧化氫酶包覆於MOFs之中,通過變性劑及過氧化氫分解酶之抑制劑對過氧化氫分解酶失活機制的不同,以了解受侷限後酵素三級結構的改變,並使用螢光光譜直接了解酵素的三級結構變化,結果顯示受MOFs限制之酵素的結構改變變化程度較低,因為其三級結構被MOFs侷限後無法反摺疊,酵素結構決定酵素的功能,故在這些環境下,酵素侷限於MOFs結構之中可提升其穩定性,保持原有的酵素功能。在此,我們提出MOFs Chemical Biology的全新的概念。利用MOFs包覆生物分子來研究特定的生化現象,同時,本論文在第二部分拓展具有更大孔洞的MOFs之綠色合成法例如: University of Oslo-66,期望生物酵素能夠在其生物活性最不受影響的條件下,包覆於孔洞材料的結構之中,以利於研究其他需要大分子生物輔酶和輔因子的化學生物學課題。
第三部分延續實驗室已畢業的顏家儀學姊之研究成果,將含有醛官能基的奈米級有機金屬骨架材料─nZIF-90─利用後修飾的方式轉換為三種分別帶有羧酸、胺基、硫醇基的不同材料,分別命名為nZIF-90-C、nZIF-90-A、nZIF-90-T。在溫和的反應條件下,材料的晶形和孔洞性質得以維持,相較於先前的文獻,本研究之方法對修飾材料之孔體積有顯著的保留。並發現此系列材料具有溫和的細胞毒性,半效應濃度(EC50)約在30~70 µg/mL,經過後修飾轉換官能基的材料nZIF-90-A及nZIF-90-T,表面帶電性較修飾前提高,利於吸附在微帶負電的細胞表面上,提高其與細胞株間的交互作用,提升其作為藥物載體的潛力及為來的應用性。
摘要(英) Metal-organic Frameworks (MOFs) are a versatile and ultra-porous class of materials composed of metal nodes and organic linkers, where the physicochemical properties of the MOFs can be controlled through careful selections of the inorganic or organic precursors. Therefore, MOFs show promise for a wide range of applications ranging from gas capture to biotechnology etc. Especially, the recent progress in water-based synthesis of Zeolitic Imidazolate Framework (ZIFs) opens a potential avenue for solving hazardous synthesis of MOFs. In our previous report, we proposed the green synthesis of ZIF-90 under aqueous and further demonstrated a de novo approach for embedding enzyme in structure of ZIF-90 by introducing enzyme during the MOFs synthesis. This fact imparts the functionality of micro-porosity in ZIF-90 to enzyme for shielding the bigger size of protease and allow the smaller substrate to diffuse in for enzyme catalysis.
In this thesis, we aim to study the merit provided by the de novo approach. We provide an additional benefit of de novo approach that the enzyme immobilized using de novo approach could shield the conformation of enzyme from unfolding, thus its biological function can be maintained under a wider range of conditions. We proposed this enhanced stability should be arisen from confinement of the enzyme molecules, wherein enzymes stay in additional mesoporous cavities formed by using enzyme as template. A fluorescence spectroscopy study shows that the structural conformation of the embedded enzyme with less change under denaturing conditions than free enzyme. Remarkably, we develop the concept of the MOFs Chemical Biology for probing on relationship between structural conformation and biological activity of the enzyme, and we try to expand the diversity of the de novo approach by exploring the other MOFs with larger aperture, which is allowed for diffusion of co-factors and co-enzymes in different sizes such as ATP and NADH. In this regard, we try to explore the synthesis UiO-66 in water-based system and mainly focus on their formation mechanism for realizing the syntheses of other MOFs material in aqueous solution. We suggested the solubility of organic linkers in aqueous solution can be the major concern in attempt to achieve a successful synthesis and provide ways to conquer the challenges.
Further, we continued to expand the advantages of green synthesis in ZIF-90 with reduced particles size. The nature of green synthesis repels the risk of toxic solvents still being present within the particles, thus shows their potential as a drug carrier. Also, the functionality of carriers provides methods to control drug release, yet the reported modifications suffer from largely reduced in merits, such as porosity. Thus, we demonstrated a green-based and simple method for the organic functionalization of crystalline nano-sized ZIF-90 (nZIF-90) as well as at least 25% micropore volume maintained via post-synthesis modification using optimal reactant molar ratios. The structural integrity of the original compound was preserved. The cytotoxicity of the nZIF-90 and nZIF-90 transformers around 30~70 µg/mL are moderate in comparison of those other organic and inorganic drug carriers. Thus, nanoscale MOF particles with new functionalities provide a new generation of carriers for drug delivery.
關鍵字(中) ★ 酵素固定化
★ 孔洞材料
★ 化學生物學
★ 藥物載體
★ 細胞毒性
★ 蛋白質構型
關鍵字(英) ★ Enzyme immobilization
★ Porous materials
★ Chemical biology
★ Drug carrier
★ Cytotoxicity
★ Protein structure conformation
論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
Part I 1
第一章 緒論 1
1-1. 金屬有機骨架材料 1
1-2. 類沸石咪唑骨架材料 4
1-3. 類沸石咪唑骨架材料-90 8
1-4. 酵素固定化於MOFs的發展 11
1-5. 研究動機與目的 14
第二章 實驗部分 15
2-1. 實驗藥品 15
2-2. 實驗儀器 17
2-2-1. 實驗使用儀器 17
2-2-2. 實驗鑑定儀器 18
2-2-3. X射線粉末繞射儀 19
2-2-4. 場發掃描式電子顯微鏡 20
2-2-5. 等溫氮氣吸/脫附儀 21
2-2-6. 螢光光譜儀 23
2-3. 酵素 24
2-3-1. 過氧化氫酶 24
2-3-2. 尿素分解酶 24
2-3-3 蛋白酶-K 25
2-4. 實驗步驟 26
2-4-1. 類沸石咪唑骨架-90包覆過氧化氫酶材料的合成 26
2-4-2. 類沸石咪唑骨架-90包覆尿素分解酶材料的合成 27
2-4-3 類沸石咪唑骨架-8包覆過氧化氫酶材料的合成 27
2-4-4. 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 28
2-4-5. 偵測蛋白質的濃度(Bradford Assay) 29
2-4-6. 偵測過氧化氫水溶液之濃度 30
2-4-7. 偵測尿素分解酶活性之方法 33
第三章 結果與討論 35
3-1. 酵素固定化應用於了解其酵素三級結構之探討 35
3-2. 尿素擴散進入ZIF-90之證明及相關結果 37
3-3. 空間限制酵素於ZIF-90之證明及相關結果 42
第四章 結論 48
Part II 49
第五章 緒論 49
5-1. University of Oslo-66 (Zr) 49
5-2. 研究動機與目的 52
第六章 實驗部分 53
6-1. 實驗藥品 53
6-2. 實驗儀器 54
6-2-1. 實驗使用儀器 54
6-2-2. 實驗鑑定儀器 54
6-3. 實驗步驟 55
6-3-1. 微波合成UiO-66材料之步驟 56
6-3-2. 水相合成UiO-66材料之步驟 56
6-3-3. 有機配體於水溶液中溶解度的測量 57
第七章 結果與討論 58
7-1. 綠色合成的開發及UiO-66合成文獻之探討 58
7-2. UiO-66水相合成機理之探討 61
第八章 結論 67
Part III 68
第九章 緒論 68
9-1. 藥物傳輸於MOFs的發展 68
9-2. 研究動機與目的 70
第十章 實驗部分 71
10-1. 實驗藥品 71
10-2. 實驗儀器 72
10-2-1. 實驗使用儀器 72
10-2-2. 實驗鑑定儀器 73
10-2-3. 熱重分析儀 74
10-2-4. 傅立葉轉換紅外線光譜儀 74
10-2-5. 固態核磁共振儀 75
10-2-6. 表面電位儀 76
10-3. 實驗步驟 77
10-3-1. nZIF-90之合成步驟 77
10-3-2. nZIF-90-C之合成步驟 78
10-3-3. nZIF-90-A之合成步驟 78
10-3-4. nZIF-90-T之合成步驟 79
第十一章 結果與討論 80
11-1. 藥物載體及其表面化學與細胞毒性之探討 80
11-2. 醇水混合系統合成nZIF-90奈米分子之鑑定 84
11-3. nZIF-90-C之方法優化及材料鑑定 87
11-4. nZIF-90-A and nZIF-90-T之方法優化及材料鑑定 89
11-5. 等溫氮氣吸/脫附結果之探討 92
11-6. 細胞毒性之研究 95
第十二章 結論 98
參考文獻 99

參考文獻 (1) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed., 2004, 43, 2334.
(2) Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M. Nature, 1999, 402, 276.
(3) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res., 2005, 38, 217.
(4) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev., 2012, 112, 673.
(5) Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. Faraday Discuss., 2017, 201, 9.
(6) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science, 2013, 341.
(7) Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev., 2014, 43, 5594.
(8) DeCoste, J. B.; Peterson, G. W. Chem. Rev., 2014, 114, 5695.
(9) Fei, H.; Cohen, S. M. J. Am. Chem. Soc., 2015, 137, 2191.
(10) Barea, E.; Montoro, C.; Navarro, J. A. R. Chem. Soc. Rev., 2014, 43, 5419.
(11) Bétard, A.; Fischer, R. A. Chem. Rev., 2012, 112, 1055.
(12) Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc., 2015, 137, 13780.
(13) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. ACS Nano, 2014, 8, 7451.
(14) Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. ACS Nano, 2014, 8, 2812.
(15) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev., 2012, 112, 1232.
(16) He, C.; Liu, D.; Lin, W. Chem. Rev., 2015, 115, 11079.
(17) Lu, K.; He, C.; Lin, W. J. Am. Chem. Soc., 2014, 136, 16712.
(18) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc., 1990, 112, 1546.
(19) Rabenau, A. Angew. Chem. Int. Ed., 1985, 24, 1026.
(20) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Dalton Trans., 2011, 40, 321.
(21) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Chem. Mater., 2009, 21, 2580.
(22) Do, J.-L.; Friščić, T. ACS Cent. Sci., 2017, 3, 13.
(23) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun., 2008, 3642.
(24) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M. J. Am. Chem. Soc., 2015, 137, 13308.
(25) Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K. ACS Catal., 2017, 7, 997.
(26) Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M. A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; Xiao, C.; Chen, J.; Zhou, R.; Zhang, C.; Farha, O. K.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. J. Am. Chem. Soc., 2017, 139, 14873.
(27) Stock, N.; Biswas, S. Chem. Rev., 2012, 112, 933.
(28) Augustus, E. N.; Nimibofa, A.; Kesiye, I. A.; Donbebe, W. Am. J. Environ. Protect., 2017, 5, 61.
(29) Banerjee, R. P., A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M. Science, 2008, 319, 939.
(30) Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Angew. Chem. Int. Ed., 2006, 45, 1557.
(31) Park, K. S. Proc. Natl Acad. Sci. Usa, 2006, 103, 10186.
(32) Hwang, S.; Chi, W. S.; Lee, S. J.; Im, S. H.; Kim, J. H.; Kim, J. J. Membr. Sci., 2015, 480, 11.
(33) Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. J. Membr. Sci., 2014, 450, 215.
(34) Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. J. Mater. Chem. A, 2014, 2, 16811.
(35) Pimentel, B. R.; Parulkar, A.; Zhou, E.-k.; Brunelli, N. A.; Lively, R. P. ChemSusChem, 2014, 7, 3202.
(36) Yang, J.; Zhang, Y.-B.; Liu, Q.; Trickett, C. A.; Gutiérrez-Puebla, E.; Monge, M. Á.; Cong, H.; Aldossary, A.; Deng, H.; Yaghi, O. M. J. Am. Chem. Soc., 2017, 139, 6448.
(37) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc., 2008, 130, 12626.
(38) Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W. Chem, Eur. J., 2013, 19, 11139.
(39) Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K. J. Am. Chem. Soc., 2015, 137, 4276.
(40) Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S. Angew. Chem. Int. Ed., 2010, 49, 9863.
(41) Deng, J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. J. Am. Chem. Soc., 2017, 139, 5877.
(42) Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S. J. Am. Chem. Soc., 2012, 134, 13188.
(43) Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S. J. Am. Chem. Soc., 2011, 133, 10382.
(44) Li, P.; Moon, S.-Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. ACS Nano, 2016, 10, 9174.
(45) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Chem. Soc. Rev., 2017, 46, 3386.
(46) Jung, S.; Park, S. ACS Catal., 2017, 7, 438.
(47) Lian, X.; Chen, Y.-P.; Liu, T.-F.; Zhou, H.-C. Chem. Sci., 2016, 7, 6969.
(48) Li, P.; Modica, Justin A.; Howarth, Ashlee J.; Vargas L, E.; Moghadam, Peyman Z.; Snurr, Randall Q.; Mrksich, M.; Hupp, Joseph T.; Farha, Omar K. Chem., 2016, 1, 154.
(49) Doonan, C.; Riccò, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Acc. Chem. Res., 2017, 50, 1423.
(50) Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Nat. Commun., 2015, 6, 7240.
(51) Li, P.; Moon, S.-Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc., 2016, 138, 8052.
(52) Hou, M.; Zhao, H.; Feng, Y.; Ge, J. Bioresour. Bioprocess., 2017, 4, 40.
(53) W. H. Bragg, M. A., F. R. S., W. L. Bragg, B. A. Proc. Royal Soc. A, 1913, 88, 428.
(54) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem., 1985, 57, 603.
(55) Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Olson, B. M. Biochim. Biophys. Acta, 1964, 89, 47.
(56) Orr, C. W. M. Biochemistry, 1967, 6, 3000.
(57) Margoliash, E.; Novogrodsky, A.; Schejter, A. Biochem. J., 1960, 74, 339.
(58) Ueda, M.; Kinoshita, H.; Yoshida, T.; Kamasawa, N.; Osumi, M.; Tanaka, A. FEMS Microbiol. Lett., 2003, 219, 93.
(59) Dixon, N. E.; Gazzola, C.; Blakeley, R. L.; Zerner, B. J. Am. Chem. Soc., 1975, 97, 4131.
(60) Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H. FEBS J., 1974, 47, 91.
(61) Bradford, M. M. Anal. Biochem., 1976, 72, 248.
(62) Ogura, Y.; Yamazaki, I. J. Biochem., 1983, 94, 403.
(63) Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P. FEBS Letters, 1990, 268, 69.
(64) Nelson, D. P.; Kiesow, L. A. Anal. Biochem., 1972, 49, 474.
(65) Štefanac, Z.; Tomašković, M.; Raković-tresić, Z. Anal. Lett., 1969, 2, 197.
(66) Monera, O. D.; Kay, C. M.; Hodges, R. S. Protein Sci., 1994, 3, 1984.
(67) Pähler, A.; Banerjee, A.; Dattagupta, J. K.; Fujiwara, T.; Lindner, K.; Pal, G. P.; Suck, D.; Weber, G.; Saenger, W. The EMBO Journal, 1984, 3, 1311.
(68) Liang, K.; Coghlan, C. J.; Bell, S. G.; Doonan, C.; Falcaro, P. Chem. Commun., 2016, 52, 473.
(69) Vallée-Bélisle, A.; Michnick, S. W. Nat. Struct. Mol. Biol., 2012, 19, 731.
(70) Goyal, M. M.; Basak, A. Protein Cell, 2010, 1, 888.
(71) Patra, M.; Mukhopadhyay, C.; Chakrabarti, A. PLOS ONE, 2015, 10, e0116991.
(72) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science, 1998, 279, 548.
(73) Mylonas, E.; Svergun, D. I. J. Appl. Crystallogr., 2007, 40, s245.
(74) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc., 2008, 130, 13850.
(75) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Chem. Soc. Rev., 2016, 45, 2327.
(76) Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc., 2013, 135, 16801.
(77) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc., 2013, 135, 10294.
(78) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem. Int. Ed., 2012, 51, 10307.
(79) Nguyen, H. G. T.; Mao, L.; Peters, A. W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catal. Sci. Tech., 2015, 5, 4444.
(80) Tan, Y.; Zhang, W.; Gao, Y.; Wu, J.; Tang, B. RSC Advances, 2015, 5, 17601.
(81) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. Adv. Mater., 2014, 26, 4056.
(82) Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D. Inorg. Chem., 2015, 54, 4862.
(83) Liu, X.; Demir, N. K.; Wu, Z.; Li, K. J. Am. Chem. Soc., 2015, 137, 6999.
(84) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. J. Am. Chem. Soc., 2013, 135, 10525.
(85) Reinsch, H. Eur. J. Inorg. Chem., 2016, 2016, 4290.
(86) Yang, Q.; Vaesen, S.; Ragon, F.; Wiersum, A. D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L.; Jobic, H.; Zhong, C.; Serre, C.; De Weireld, G.; Maurin, G. Angew. Chem. Int. Ed., 2013, 52, 10316.
(87) Reinsch, H.; Waitschat, S.; Chavan, S. M.; Lillerud, K. P.; Stock, N. Eur. J. Inorg. Chem., 2016, 2016, 4490.
(88) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.; Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.; Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G. J. Mater. Chem. A, 2015, 3, 3294.
(89) Reinsch, H.; Bueken, B.; Vermoortele, F.; Stassen, I.; Lieb, A.; Lillerud, K.-P.; De Vos, D. CrystEngComm, 2015, 17, 4070.
(90) Yang, D.; Bernales, V.; Islamoglu, T.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. J. Am. Chem. Soc., 2016, 138, 15189.
(91) Hu, Z.; Zhao, D. Dalton Trans., 2015, 44, 19018.
(92) Hennig, C.; Weiss, S.; Kraus, W.; Kretzschmar, J.; Scheinost, A. C. Inorg. Chem., 2017, 56, 2473.
(93) Schaate, A. Chem. Eur. J., 2011, 17, 6643.
(94) Sang, X.; Zhang, J.; Xiang, J.; Cui, J.; Zheng, L.; Zhang, J.; Wu, Z.; Li, Z.; Mo, G.; Xu, Y.; Song, J.; Liu, C.; Tan, X.; Luo, T.; Zhang, B.; Han, B. Nat. Commun., 2017, 8, 175.
(95) Muthu Prabhu, S.; Meenakshi, S. Chem. Eng. J., 2015, 262, 224.
(96) Allen, T. M.; Cullis, P. R. Science, 2004, 303, 1818.
(97) DeSantis, C. E.; Lin, C. C.; Mariotto, A. B.; Siegel, R. L.; Stein, K. D.; Kramer, J. L.; Alteri, R.; Robbins, A. S.; Jemal, A. CA: Cancer J. Clin., 2014, 64, 252.
(98) Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F.; Fairen-Jimenez, D. J. Am. Chem. Soc., 2017, 139, 7522.
(99) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Nat. Mat., 2009, 9, 172.
(100) Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. J. Am. Chem. Soc., 2017, 139, 14209.
(101) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature, 1958, 182, 1659.
(102) Davis, M. E.; Chen, Z.; Shin, D. M. Nat Rev Drug Discov, 2008, 7, 771.
(103) Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Adv. Func. Mat., 2016, 26, 2715.
(104) Lampam GM, P. D., Kriz GS,Vyvyan JR Spectroscopy; Fourth ed.; Brooks/Cole, Cengage Learning Canada, 2010.
(105) Pretsch, E.; Bühlmann, P.; Affolter, C.; Pretsch, E.; Bhuhlmann, P.; Affolter, C. Structure determination of organic compounds; Springer, 2009.
(106) Yee, K.-K.; Reimer, N.; Liu, J.; Cheng, S.-Y.; Yiu, S.-M.; Weber, J.; Stock, N.; Xu, Z. J. Am. Chem. Soc., 2013, 135, 7795.
(107) Williams, K.; Meng, L.; Lee, S.; Lux, L.; Gao, W.; Ma, S. Inorg. Chem. Front., 2016, 3, 393.
(108) Bhattacharjee, S.; Lee, Y.-R.; Ahn, W.-S. CrystEngComm, 2015, 17, 2575.
(109) Garzón-Tovar, L.; Rodríguez-Hermida, S.; Imaz, I.; Maspoch, D. J. Am. Chem. Soc., 2017, 139, 897.
(110) He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y. Small, 2009, 5, 2722.
(111) Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Small, 2007, 3, 1941.
(112) Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. J. Mater. Chem. B, 2014, 2, 262.
(113) Wang, X.-G.; Dong, Z.-Y.; Cheng, H.; Wan, S.-S.; Chen, W.-H.; Zou, M.-Z.; Huo, J.-W.; Deng, H.-X.; Zhang, X.-Z. Nanoscale, 2015, 7, 16061.
(114) Ren, F.; Yang, B.; Cai, J.; Jiang, Y.; Xu, J.; Wang, S. J. Hazard. Mater., 2014, 271, 283.
(115) Jin, H.; Heller, D. A.; Sharma, R.; Strano, M. S. ACS Nano, 2009, 3, 149.

指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2018-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明