參考文獻 |
參考文獻
[1] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells." Chem. Rev. 2010, 110, 6595-6663.
[2] http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra.
[3]http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html.
[4] E. Becquerel, "Memoire sur les effets électriques produits sous l’influence des rayons solaires." C. R. Acad. Sci. 1839, 9, 561-567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells." Chem. Rev. 2015, 115, 2136-2173.
[6] https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian.
[7] a) M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 51)." Prog. Photovolt. Res. Appl. 2018, 26, 3-12; b) https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell." Nature 1976, 261, 402-403.
[9] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." Nature 1991, 353, 737-740.
[10] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells." Energy Environ. Sci. 2015, 8, 3495-3514.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells." ACS Nano 2009, 3, 3103-3109.
[12] S. Mathew, A. Yella, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers." Nat. Chem. 2014, 6, 242-247.
[13] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes." Chem. Commun. 2015, 51, 15894-15897.
[14] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes." J. Am. Chem. Soc. 1993, 115, 6382-6390.
[15] a) M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 Solar Cell." J. Phys. Chem. B 2003, 107, 8981-8987; b) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers." J. Am. Chem. Soc. 2005, 127, 16835-16847.
[16] M. K. Nazeeruddin, T. R. P. Pechy, S. M. Zakeeruddin, R. H. Baker, P. Comte, L. C. P. Liska, E. Costa, V. Shklover, G. B. D. L. Spiccia, C. A. Bignozzi and M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells." J. Am. Chem. Soc. 2001, 123, 1613-1624.
[17] a) C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium (II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells." Angew. Chem. Int. Ed. 2011, 50, 2054-2058; b) C. W. Hsu, S. T. Ho, K. L. Wu, Y. Chi, S. H. Liu, and P. T. Chou, "Ru (Ⅱ) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells." Energy. Environ. Sci. 2012, 5, 7549-7554.
[18] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells." Angew. Chem. Int. Ed. 2011, 50, 8270-8274;
[19] H. W. Lin, Y.-S. Wang, Z. Y. Huang, Y. M. Lin, C. W. Chen, S. H. Yang, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, "Origins of device performance in dicarboxyterpyridine Ru (II) dye-sensitized solar cells." Phys. Chem. Chem. Phys. 2012, 14, 14190-1495.
[20] M. Kimura, J. Masuo, Y. Tohata, K. Obuchi, N. Masaki, T. N. Murakami, N. Koumura, K. Hara, A. Fukui, R. Yamanaka and S. Mori, "Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes." Chem. Eur. J. 2013, 19, 1028-1034.
[21] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent." Energy. Environ. Sci. 2012, 5, 6057-6060.
[22] Y. Numata, S. P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, "Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells." Adv. Funct. Mater. 2013, 23, 1817-1823.
[23] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance." Eur. J. Inorg. Chem. 2014, 2014, 4734-4739.
[24] H. Ozawa, K. Fukushima, A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells." Inorg. Chem. 2015, 54, 8887-8889.
[25] H. Ozawa, Y. Tawaraya and H. Arakawa, "Effects of the alkyl chain length of imidazoliumiodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells." Electrochim. Acta. 2015, 151, 447-452.
[26] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand." J. Mater. Chem. A 2016, 4, 1762-1770.
[27] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, "Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells." J. Am. Chem. Soc. 2011, 133, 9304-9310.
[28] A. Colombo, C. Dragonetti, A. Valore, C. Coluccini, N. Manfredi and A. Abbotto, "Thiocyanate-free ruthenium (II) 2,2’-bipyridyl complexes for dye-sensitized solar cells." Polyhedron 2014, 82, 50-56.
[29] C. H. Siu, C. L. Ho, J. He, T. Chen, X. Cui, J. Zhao and W. Y. Wong, "Thiocyanate-free ruthenium (II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells." J. Organomet. Chem. 2013, 748, 75-83.
[30] H. N. T. P. Gao, M. Grätzel and M. K. Nazeeruddin, "Fine-tuning the electronic structure of organic dyes for dye-sensitized solar cells." Org. Lett. 2012, 14, 4330-4333.
[31] T. Li, J. Gao, Y. Cui, C. Zhong, Q. Ye and L. Han, "Novel D-π-A carbazole sensitizers with 4-phenyl-2-(thiophen-2-yl) thiazole as π-bridge for dye-sensitized solar cells." J Photochem. Photobiol. A Chem. 2015, 303-304, 91-98.
[32] R. P. Tejada, L. Pellejà, E. Palomares, S. Franco, J. Orduna, J. Garín and R. Andreu, "Novel 4 H -pyranylidene organic dyes for dye-sensitized solar cells: Effect of different heteroaromatic rings on the photovoltaic properties." Org. Electron. 2014, 15, 3237-3250.
[33] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells." Chem. Eur. J. 2010, 16, 3184-3193.
[34] a) A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties." J. Polym. Sci. A Polym. Chem. 2013, 51, 4481-4488; b) B. Fu, C. Y. Wang, B. D. Rose, Y. Jiang, M. Chang, P. H. Chu Z. Yuan, C. Fuentes-Hernandez, B. Kippelen, J. L. Brédas, D. M. Collard and E. Reichmanis, "Molecular engineering of nonhalogenated solution-processable bithiazole-based electron-transport polymeric semiconductors." Chem. Mater. 2015, 27, 2928-2937.
[35] H. Usta, W. C. Sheets, M. Denti, G. Generali, R. Capelli, S. Lu, X. Yu, M. Muccini and A. Facchetti, "Perfluoroalkyl-functionalized thiazole–thiophene oligomers as N-channel semiconductors in organic field-effect and light-emitting transistors." Chem. Mater. 2014, 26, 6542-6556.
[36] Z. Xiao, J. Subbiah, K. Sun, S. Ji, D. J. Jones, A. B. Holmes and W. W. H. Wong, "Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications." J. Mater. Chem. C 2014, 2, 1306-1313.
[37] R. S. Kumar, H. Jeong, J. Jeong, R. K. Chitumalla, M. J. Ko, K. S. Kumar, J. Jang and Y. A. Son, "Synthesis of porphyrin sensitizers with a thiazole group as an efficient π-spacer: potential application in dye-sensitized solar cells." RSC Adv. 2016, 6, 41294-41303.
[38] M. Larhed, C. Moberg and A. Halleberg, "Microwave-accelerated homogeneous catalysis in organic chemistry." Acc. Chem. Res. 2002, 35, 717-727.
[39] a) B. L. Hayes, "Recent Advances in Microwave Assisted Synthesis." Aldricchim. Aceta. 2004, 17, 65-76; b) "."; c) "CEM聚焦微波化學反應系統—中/英文操作及維護手冊."
[40] a) D. A. Skoog, F. J. Holler and S. R. Crouch. Principles of Instrumental Analysis, 6th ed. Brooks/Cole, Cengage Learning, 2007; b) D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to Spectroscopy, 5th ed. Brooks/Cole, Cengage Learning, 2015.
[41] W. H. Brown and T. Poon, Introduction to Organic Chemistry, 2th ed. Saunders College Publishing, 2000.
[42] " http://140.136.176.3/joom/data/menu/files/exp/CV."
[43] G. T. Morgan and F. H. Burstall, "Dehydrogenation of pyridine by anhydrous ferric chloride." J. Am. Chem. Soc. 1932, 20-30.
[44] D. Saccone, C. Magistris, N. Barbero, P. Quagliotto, C. Barolo and G. Viscardi, "Terpyridine and quaterpyridine complexes as sensitizers for photovoltaic applications." Materials 2016, 9, 137-174.
[45] F. Kröhnke, "The specific synthesis of pyridines and oligopyridines." Synthesis 1976, 1, 1-24.
[46] V. P. Mehta and E. V. V. Eycken, "Microwave-assisted C-C bond forming cross-coupling reactions: an overview." Chem. Rev. 2011, 40, 4925-4936.
[47] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, "Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles." Nanoscale 2010, 2, 145-152.
[48] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide, "Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films." J. Phys. Chem. C. 2009, 113, 20738-20744.
[49] K. Haraa, T. Nishikawab, M. Kurashigea, H. Kawauchic, T. Kashimac, K. Sayamaa,
K. Aikab and H. Arakawa "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer." Sol. Energy Mater. Sol. Cells 2005, 85, 21-30.
[50] Y. Shiac, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium." Phys. Chem. Chem. Phys. 2011, 13, 14590-14597.
[51] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/I3- redox couple." J. Phys. Chem. B. 2005, 109, 3480–3487.
[52] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability." J. Phys. Chem. C. 2009, 113, 21779–21783. |