博碩士論文 105226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.223.171.168
姓名 李良泰(Ted Liang-Tai Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具部分背向照明之LED套件設計
(LED Lens Design with Partial Backward Lighting)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在日常生活中會遇到許多交通標誌,在時間與節能減碳的推演下,LED交通標誌的使用量越來越多,但是在高速公路上的使用並無統一規範。
LED雖然有壽命長、節省能源與穩定度高等優點,但同時具有高亮度及高光源指向性等特性,若應用不當則容易產生眩光。
我們先前的研究發現,高速公路上的 LED 標誌白色字體與綠色背景的對比度最好落在 9:1 至 10:1 之間,方可有最佳的舒適度與判別度。
可是現今採用點矩陣設計的高速公路交通標誌,普遍都使用砲彈型 LED,此型式的 LED 雖然有便宜、普遍等優點,但是當使用在高速公路標誌上時會產生無限大的對比度,容易產生眩光問題。

因此在本研究中我們提出一個有部分背向照明的 LED 套件。此套件目的是當直接加裝在既有的砲彈型 LED 上方時,會讓部分的光背向反射,以達到我們所期望的 10:1 對比度。

我們先利用改進的光源模型建立量測與模擬流程及中場理論,來建立出砲彈型白光 LED 的光源模型。
有了光源模型之後我們就可以開始進行套件的設計,Lens 1 到 Lens 3 主要是參考現今已有的設計加以應用,Lens 4 之後的都是結合或改進前面的套件而衍生出來的版本。
設計完的套件會藉由 ASAP 光學追跡軟體進行向前的配光曲線與背向照明的光分佈分析,藉由此分析篩選出發光角在 60° 與符合我們 10:1 對比度目標的套件。

模擬結果得到 Lens 2 與 Lens 11 是效果最卓越的兩個套件。
Lens 2 是 一個薄塑膠套管,上面鍍上 90% 高反射率的鍍膜。
這個套件的背向照明雖然不是很均勻,但是能量的值與範圍都還在規範內。
突出的是他的前向正規化之後的配光曲線幾乎與原本的光源模型相同。
Lens 11 為一個粗的塑膠圓柱,其上緣外側有 45° 的切割,此切割面上鍍有一半反射、一半穿透的鍍膜。
這個套件的前向正規化之後的配光曲線雖然與原本的 LED 光源模型有差異,但是也都還在發光角 60° 以上的規範內。
以背向照明的分佈來說,此套件明顯的比 Lens 2 均勻,能量上也接近往前比上往後 10:1 的比例。

以本研究設計出來的 11 個套件中,Lens 2 與 Lens 11 的結果都是可以接受的,接下來所需考慮的是實際上生產的成本與實際的表現。
先忽略製造成本的話,建設使用本研究提出的 Lens 2 與 Lens 11 在高速公路的點陣式 LED 標誌上,可以有效地產生適量的背後照明來達到最佳觀看舒適度與判別度。
摘要(英) In this thesis, a lens that induces backward illumination when fitted on bullet-shaped LEDs is designed and simulated.

Traffic signs play an essential role in our daily driving life.
With costs plummeting and growing environmental awareness, traffic signs are utilizing more and more LEDs, but there are still no regulations for the usage on the freeway in Taiwan.
Our previous studies have found that the contrast ratio of LED signs on the freeway should be around $ 10:1 $ between white font and green background to have the best comfort and legibility.

Nowadays freeway traffic signs are adopting the dot-matrix design and typically use bullet-shaped LEDs.
Although this type of LED has the advantages of being cheap and easy to obtain, it tends to cause infinite contrast and ghostly effects when used on a freeway sign.
So in this thesis, we propose a LED lens that induces partial backward lighting.
The goal of this lens is to allow part of the light to be directed backward when retrofitted directly over an existing bullet-shaped LED to achieve the desired $ 10:1 $ contrast.

We first use an improved LED source model technique and midfield theorem to establish the LED source model for the sample bullet-shaped white LEDs.
Using the LED source model, we then designed a total of 11 lenses.
Lens 1 to Lens 3 is designed similar to existing designs commonly found in practice.
Lens 4 and later designs are either a combination or improvement of earlier designs proposed.
The lenses are simulated with the bullet-shaped LED source model to obtain front-facing normalized angular intensity distribution curves and backward illumination distributions with ASAP ray-tracing software to see if the designs meet our $ 10:1 $ contrast goal and fall within the luminous angle of 60° FWHM specifications.
Lens 2 and Lens 11 are the two lenses that were the most effective.

Lens 2 is based on a thin plastic sleeve coated with a 90% highly reflective coating.
Although the backward illumination pattern of this lens is not very smooth, the total backward energy is still within the specification.
What is striking is that the front-facing normalized angular intensity distribution curve for this lens is almost the same as that of the LED source model.

Lens 11 is based on a thick plastic cylinder with a cut of 45° on the outside of its upper edge, which is coated with 50% reflective and 50% transmissive coating.
Although the front-facing normalized angular intensity distribution curve is significantly different from that of the LED source model, it is still within the 60° FWHM luminous angle specifications.
Where it stands out is the backward illumination distributions, this lens has a significantly more continuous backward illumination distribution than Lens 2 and also has a power ratio of front-facing power to backward lighting power close to $ 10:1 $.

Out of the 11 lenses designed in this study, both the results from Lens 2 and Lens 11 are acceptable, so it boils down to the cost of production and the priority of the two properties --- front-facing normalized angular intensity distribution or backward illumination distribution --- in the application.
Therefore, ignoring the manufacturing costs, Lens 2 and Lens 11 proposed in this study both meet our criteria and can be used to retrofit freeway LED signs using bullet-shaped LEDs.
This modification will efficiently produce the appropriate amount of backward lighting needed to achieve the best viewing comfort and legibility.
關鍵字(中) ★ 發光二極體
★ 套件
★ 透鏡
★ 模擬
★ 背向照明
關鍵字(英) ★ LED
★ Add-on
★ Lens
★ Simulation
★ Backward
★ Illumination
★ Lighting
論文目次 摘要 (p.vii)
Abstract (p.ix)
Acknowledgement (p.xi)
Contents (p.xiii)
List of Figures (p.xv)
List of Tables (p.xviii)
Glossary (p.xx)
1 Introduction (p.1)
1.1 Motivation and Background (p.1)
1.2 Research Objective (p.3)
1.3 Thesis Scope (p.4)
2 Literature Review (p.6)
2.1 Contrast and Luminance Related to Glare on Freeway Signs (p.6)
2.2 LED Freeway Signs Specifications (p.8)
2.3 LED Source Modeling (p.9)
2.4 Midfield Theorem (p.10)
2.5 Lens Design (p.11)
3 Method (p.13)
3.1 Assumptions (p.13)
3.2 Equipment and Software (p.14)
3.2.1 LED Specifications (p.14)
3.2.2 Measurement Platform (p.15)
3.2.3 Simulation and Data Analysis (p.19)
3.3 Preliminary Measurement Platform Test (p.19)
3.4 Experiment Design (p.20)
3.4.1 Measurement (p.21)
3.4.2 NCC and LED Selection (p.22)
3.4.3 LED Source Model (p.23)
3.4.4 Lens Design (p.24)
3.4.5 Verification (p.28)
4 Results and Discussions (p.32)
4.1 Bullet-Shaped LED Source Model (p.32)
4.1.1 Representative Angular Intensity Distribution (p.32)
4.1.2 Initial Bullet-Shaped LED Model Dimensions (p.37)
4.1.3 Regression (p.40)
4.1.4 Source Dimensions and Position (p.47)
4.1.5 Two-Way Regression (p.51)
4.1.6 Dome Eccentricity Final Check (p.53)
4.1.7 Final Model Dimensions (p.56)
4.2 LED Lens (p.57)
4.2.1 Front-Facing Normalized Angular Intensity Distribution (p.58)
4.2.2 Manufacturing Tolerance (p.59)
4.2.3 Lens 1 --- Inverted Cone Candle Lens (p.59)
4.2.4 Lens 1 Variants --- Different Apex Angles (p.62)
4.2.5 Lens 2 --- High Reflectance Coating (p.63)
4.2.6 Lens 3 --- Fresnel Reflectance (p.66)
4.2.7 Lens 4 --- Fresnel Reflectance with Repeated Structures (p.68)
4.2.8 Lens 5 --- Lens 4 with Extended Repeated Structures (p.71)
4.2.9 Lens 6 --- TIR with Repeated Structures (p.73)
4.2.10 Lens 7 --- Lens 6 with Extended Repeated Structures (p.76)
4.2.11 Lens 8 --- Lens 1 With Wider Body to Reclaim Light (p.78)
4.2.12 Lens 9 --- Compound Design of Lens 1 and Reflective Coating (p.81)
4.2.13 Lens 10 --- Lens 9 with Reduced Reflectance (p.83)
4.2.14 Lens 11 --- Compound Design of Lens 10 and Lens 3 (p.86)
4.2.15 Lens Summary (p.88)
5 Conclusion and Research Prospect (p.91)
5.1 Conclusion (p.91)
5.2 Research Prospect (p.92)
Bibliography (p.93)
參考文獻 [1] D. Steigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics 8, 310–320 (2002).
[2] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3, 180–182 (2009).
[3] J. P. Freyssinier, Y. Zhou, V. Ramamurthy, A. Bierman, J. D. Bullough, and N. Naren- dran, “Evaluation of light-emitting diodes for signage applications,” in Third International Conference on Solid State Lighting, Vol. 5187, edited by I. T. Ferguson, N. Narendran, S. P. DenBaars, and J. C. Carrano (Jan. 2004), pp. 5–7.
[4] Taiwan Green Productivity Foundation, LED Illumination in Energy Saving Applications Technical Manual, tech. rep. (Bureau of Energy Ministry of Economic Affairs, 2016).
[5] 楊明峰, LED 路標發亮用路人喊讚, (Dec. 2015) http : / / www . chinatimes . com / newspapers/20151202000644-260107 (visited on 01/17/2018).
[6] M.-W. Lin, M.-W. Lee, E.-C. Chang, and Y.-C. Chen, “Flicker-glare and visual-comfort assessments of light emitting diode billboards II: color display,” Applied Optics 54, 4089– 4096 (2015).
[7] M. Rea, IESNA Lighting Handbook: Reference and Application (2000).
[8] Institution of Lighting Professionals, Brightness of Illuminated Advertisements. 3rd Edi- tion, tech. rep. (Institution of Lighting Professionals, 2015).
[9] T.-Y. Huang, “Evaluations on four different designs of LED traffic signs, 四種 LED 交通標誌設計,” zh-TW, (黃鼎元), MS thesis (National Central University, 2017).
[10] J. P. Freyssinier, N. Narendran, and J. D. Bullough, “Luminance requirements for lighted signage,” in SPIE Optics + Photonics (2006), pp. 63371M–63371M–8.
[11] P. Garvey, A. Z. Zineddin, and M. Pietrucha, Letter Legibility for Signs and Other Large Format Applications, Vol. 45 (2001), pp. 1443–1447.
[12] Y. C. Chen, C. Y. Fang, M. W. Lee, T. X. Lee, H. S. Wang, and C. C. Sun, “Luminance contrast study of LED traffic signs,” in CIE x042:2016 (Mar. 2016), pp. 283–286.
[13] R. E. Dewar, J. G. Ells, and G. Mundy, “Reaction time as an index of traffic sign per- ception,” Human Factors: The Journal of the Human Factors and Ergonomics Society 18, 381–391 (1976).
[14] T. A. N. F. Bureau, 2016 National Freeway LED Signs Trial Project, 105 年度國道 LED 標誌試辦計畫, tech. rep. (MOTC, 2016).
[15] 交通部, 車輛燈光與標誌檢驗規定, tech. rep. 1 (交通部, 2017).
[16] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Applied Physics Letters 75, 2365–2367 (1999).
[17] M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, “Advanced topics in source modeling,” in Modeling and Characterization of Light Sources, Vol. 4775, edited by C. B. Wooley (Aug. 2002), pp. 46–57.
[18] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Optics Letters 31, 2193 (2006).
[19] M. G. Craford, “Visible light-emitting diodes: past, present, and very bright future,” MRS Bulletin 25, 27–31 (2000).
[20] I. Moreno and C.-C. Sun, “Modeling the radiation pattern of LEDs,” Optics Express 16, 1808–1819 (2008).
[21] T. L.-T. Lee and Y.-C. Chen, “Luminance and contrast of LED freeway traffic signs for optimal legibility and visual comfort,” in OPTIC 2016 (2016).
[22] Taiwan Area National Freeway Bureau, MOTC, Traffic Engineering Drawing Standards, tech. rep. (MOTC, 2004).
[23] Bureau of Energy Ministry of Economic Affairs and Taiwan Green Productivity Foundation, LED Road Traffic Sign Technical Regulations, tech. rep. (Bureau of Energy Ministry of Economic Affairs, 2013).
[24] P. R. Boyce, Lighting for Driving: Roads, Vehicles, Signs, and Signals (CRC Press, 2008).
[25] Bureau of Standards, Metrology & Inspection, Chinese national standards CNS-4345 Z7059 (Bureau of Standards, Metrology & Inspection, 2014).
[26] Federal Highway Administration - U.S.Department of transportation, Manual on uniform traffic control devices for streets and highways, May (2009), pp. 347–432.
[27] S. J. Lee, “Analysis of light-emitting diodes by monte carlo photon simulation,” Applied Optics 40, 1427 (2001).
[28] F. Hu, K.-Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method.,” Applied Optics 44, 2768– 71 (2005).
[29] B&M Optics Co, Candle lens, (2016) http://www.asia?manufacturer.com/manufacturers/ 001 / products ? detail % 7B % 5C _ %7D42749 % 7B % 5C _ %7D100131582 . html (visited on 8/18/2016).
[30] B&M Optics Co, Batwing lens, (2016) http://carol.tw/list.php?type%7B%5C_%7Did=2%7B%5C&%7Dkind%7B%5C_%7Did=1%7B%5C&%7Dkind2%7B%5C_%7Did=3%7B%5C&%7Dpage% 7B%5C_%7Dcurrent=1 (visited on 01/01/2016).
[31] X.-H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Optics Express 21, 10612–10621 (2013).
[32] Y. Li, Y. Liu, E. P. Boonekamp, L. Shi, Y. Mei, T. Jiang, Q. Guo, and H. Wu, “LED solution for e14 candle lamp,” in Ninth International Conference on Solid State Lighting, Vol. 7422, edited by I. T. Ferguson, C. Hoelen, J. Jiao, and T. Taguchi (Aug. 2009), pp. 7422 - 7422 - 12.
[33] National Instruments, LabVIEW System Design Software, version 2016, 2016.
[34] Breault Research Organization, Inc., ASAP, version Next Gen V1: SP2, Tucson, AZ, 2017.
[35] The Mathworks Inc., MATLAB - MathWorks, version 2017a, Natick, Massachusetts, United States, 2017.
[36] R. R. Sokal and F. J. Rohlf, Biometry : The Principles and Practice of Statistics in Biological Research, 3rd (W.H. Freeman, New York, 1995).
[37] H. S. Kaufman, “Handbook of epoxy resins. Henry Lee and Kris Neville,” Journal of Applied Polymer Science 14, 253–253 (1970).
[38] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH image to ImageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).
[39] B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” in Nonimaging Optics: Maximum Efficiency Light Transfer VI, edited by R. Winston (Nov. 2001), p. 121.
[40] R. P. Feynman, R. B. Leighton, M. Sands, and E. M. Hafner, The Feynman Lectures on Physics; Vol. I (Addison Wesley Longman, 1970).
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明