博碩士論文 104327601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.17.159.48
姓名 張寶瑩(Chong Poh Yin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 飛秒雷射直寫技術應用於SU8與其複合材料之微結構製作與檢測
(Fabrication and Characterization of Microstructures Initiated Using Femtosecond Laser Direct Write from SU8 and Its Composites)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙光子吸收是一種非線性光學現象,可以用高尖峰強度的緊聚焦光束來實現。相互作用區域局限於極其局部的焦點體積。本研究旨在探討負型光阻SU8的雙光子聚合。利用波長740 nm的鈦寶石雷射為能量源引發雙光子吸收,進而導致SU8的聚合。SU8的雙光子聚合本質上是累積效應,因為體素會隨著曝光時間的增加變大。SU8結構線寬對掃描速度和雷射功率呈現對數性的依賴關係。解析度取決於雷射功率和掃描速度,這很大程度上取決於光起始劑的效率。本研究達到了80 nm的最小線寬。結構的附著力受到圖案設計的影響。沒有足夠的機械支撐,這些結構在顯影階段無法承受沖洗力。
本研究使用SU8和銅前驅物,包括硝酸銅和氯化銅,來開發複合材料。由於良好的導電性和成本效益,銅被選擇為填充材料。合成的複合溶液是藍色且均勻的,可將其旋塗在基材上以形成均勻的薄膜。飛秒雷射的照射引發雙光子吸收,導致SU8的聚合,銅離子的還原和銅顆粒的燒結。掃描速度會影響表面形態,因為掃描速度太慢會導致熱能積累和燒蝕。複合結構的線寬取決於雷射功率。隨著掃描速度增加,複合結構的電阻降低,直到達到最佳掃描速度。另一方面,隨著激光功率的增加,線寬增加而電阻減小。本研究達到的導電率為365.50 S/m,遠高於導電率為10-14 S/m的純SU8。
摘要(英) Two-photon absorption is a nonlinear optical phenomenon which can be realized with a tightly focused beam with high peak intensity. The interaction region is limited to an extremely localized focal volume. In this study, two-photon polymerization of negative tone photoresist, SU8 is investigated. Titanium sapphire femtosecond laser at 740 nm is used as energy source to induce two-photon absorption which in turn leads to polymerization of SU8. Two-photon polymerization of SU8 is accumulative in nature, as bigger voxel is obtained with increased exposure time. Line width of SU8 structures demonstrate logarithmic dependence on scanning speed and laser power. Resolution is determined by laser power and scanning speed, which is greatly dependent on efficiency of photoinitiator. A minimum line width of 80 nm is achieved in this study. Adhesion of structures is influenced by pattern design. Without sufficient mechanical support, these structures are unable to withstand rinsing forces during development stage.
Composite material is developed using SU8 and copper precursors, particularly copper (II) nitrate tyihydrate and copper (II) chloride dihydrate. Copper is selected as filler material due to excellent electrical conductivity and cost effectiveness. Blue, homogenous composite solution is synthesized, which can be spin coated on substrate to create a uniform thin film. Irradiation of femtosecond laser induces two-photon absorption that leads to polymerization of SU8, reduction of copper ions and sintering of copper particles. Surface morphology is affected by scanning speed, as low scanning speed subsequently leads to accumulation of heat energy and ablation. Line width of composite structure is determined by laser power. Electrical resistance of the composite structures decreases with scanning speed until optimum scanning speed is achieved. On the other hand, as laser power increases, line width increases while resistance decrease. Electrical conductivity of 365.50 S/m is achieved, which is a leap of advancement as compared to pure SU8 with conductivity of 10-14 S/m.
關鍵字(中) ★ 雷射直寫
★ 雙光子吸收
★ 飛秒雷射
★ 負光阻SU8
★ 複合材料
關鍵字(英) ★ Laser direct writing
★ two-photon absorption
★ femtosecond laser
★ negative photoresist SU8
★ composite material
論文目次 Contents
摘要 i
Abstract ii
List of Figures v
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2-1 Light-Matter Interaction 3
2-1-1 Population Distribution 3
2-1-2 Stimulated Absorption 4
2-1-3 Atomic Transitions 4
2-1-4 Optical Absorption 5
2-1-5 Two Photon Absorption 5
2-2 Photoresist 8
2-2-1 Properties of SU8 10
2-3 Two-Photon Polymerization (2PP) with Laser Direct Writing 12
2-4 Fabrication of Composite Materials 20
2-5 Research Objectives 37
Chapter 3 Research Methodology 38
3-1 Experiment Procedures 38
3-1-1 Synthesis of Composite Materials 39
3-1-2 Preparation of Specimen 39
3-1-3 Laser Direct Writing 40
3-1-4 Development 43
3-1-5 Sample Characterization 43
3-2 List of Materials and Apparatus 46
Chapter 4 Results and Discussion 48
4-1 Two-Photon Polymerization of SU8 48
4-1-1 Absorbance and Transmittance of SU8 48
4-1-2 Accumulative Nature of Two-Photon Polymerization 49
4-1-3 Effects of Scanning Speed 51
4-1-4 Effects of Laser Power 54
4-1-5 Enhancement through Pattern Design 56
4-2 Two-Photon Polymerization and Photoreduction of Composite Materials 63
4-2-1 Composite Material of SU8 and Copper (II) Nitrate Trihydrate 65
4-2-2 Composite Material of SU8 and Copper (II) Chloride Dihydrate 77
4-2-3 Comparison of the Composite Materials 85
Chapter 5 Conclusion 90
References 92
Appendix 97
A1 Profile of SU8 Structures 97
A2 Questions and Answers (Q&A) 99

參考文獻 References

[1] U. M. Annaiyan, K. Kalantar-Zadeh, Q. Fang and I. Cosic, "Development of a conductive photoresist with a mixture of SU-8 and HCl doped polyaniline," in TENCON, Melbourne, 2005.
[2] Y.-L. Zhang, Q.-D. Chen, H. Xia and H.-B. Sun, "Designable 3D nanofabrication by femtosecond laser direct writing," Nano Today, vol. 5, no. 5, pp. 435-448, 2010.
[3] A. Ostendorf and B. N. Chichkov, "Two-photon polymerization: A new approach to micromachining," Photonics Spectra, vol. 40, no. 10, p. 72, 2006.
[4] A. Ovsianikov and B. N. Chichkov, "Two-Photon Polymerization – High Resolution 3D Laser Technology and Its Applications," in Nanoelectronics and Photonics, New York, Springer, 2008, pp. 427-446.
[5] W. M. Steen and J. Mazumder, Laser Material Processing, London: Springer, 2010.
[6] J.-F. Xing, M.-L. Zheng and X.-M. Duan, "Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery," Chemical Society Reviews, vol. 44, no. 15, pp. 5031-5039, 2015.
[7] H. Nishiyama and Y. Saito, "Electrostatically tunable plasmonic devices fabricated on multi-photon polymerized three-dimensional microsprings," Optics Express, vol. 24, no. 1, pp. 637-644, 2016.
[8] T. Tanaka, A. Ishikawa and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Applied Physics Letters, vol. 88, no. 8, p. 081107, 2006.
[9] E. Kannatey-Asibu Jr., Principles of laser materials processing, New Jersey: John Wiley & Sons, 2009.
[10] K.-S. Lee, D.-Y. Yang, S. H. Park and R. H. Kim, "Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications," Polymers for Advanced Technologies, vol. 17, no. 2, pp. 72-82, 2006.
[11] A.-K. Hadjantonakis, M. E. Dickinson, S. E. Fraser and V. E. Papaioannou, "Technicolour transgenics: imaging tools for functional genomics in the mouse," Nature Reviews Genetics, vol. 4, no. 8, pp. 613-625, 2003.
[12] A. Singh, G. Scotti, T. Sikanen, V. Jokinen and S. Franssila, "Laser Direct Writing of Thick Hybrid Polymers for Microfluidic Chips," Micromachines, vol. 5, no. 3, pp. 472-485, 2014.
[13] J. L. Dektar and N. P. Hacker, "Photochemistry of triarylsulfonium salts," Journal of the American Chemical Society, vol. 112, no. 16, pp. 6004-6015, 1990.
[14] W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith and H.-J. Güntherodt, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," Journal of Applied Physics, vol. 97, no. 5, p. 054907, 2005.
[15] N. Huby, J. Bigeon, G. Danion, J.-L. Duvail, F. Gouttefangeas, L. Joanny and B. Bêche, "Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures," Micromachines, vol. 6, no. 5, pp. 544-553, 2015.
[16] H. C. Chiamori, J. W. Brown, E. V. Adhiprakasha, E. T. Hantsoo, J. B. Straalsund, N. A. Melosh and B. L. Pruitt, "Suspension of nanoparticles in SU-8: Processing and characterization of nanocomposite polymers," Microelectronics Journal, vol. 39, no. 2, pp. 228-236, 2008.
[17] M. Majidian, C. Grimaldi, A. Pisoni, L. Forró and A. Magrez, "Electrical conduction of photo-patternable SU8-graphene composites," Carbon, vol. 80, pp. 364-372, 2014.
[18] F. Niesler and M. Hermatschweiler, "Two-Photon Polymerization – A Versatile Microfabrication Tol," Laser Technik Journal, vol. 12, no. 3, pp. 44-47, 2015.
[19] Z.-j. Chen, J. Yao, Q.-j. Xu and Z.-h. Wang, "Two-photon polymerization fabrication and Raman spectroscopy research of SU-8 photoresist using the femtosecond laser," Optoelectronics Letters, vol. 13, no. 3, pp. 210-213, 2017.
[20] S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, "Finer features for functional microdevices," Nature, vol. 412, pp. 697-698, 2001.
[21] S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology, vol. 16, no. 6, pp. 846-849, 2005.
[22] K. Ohlinger, Y. Lin, Z. Poole and K. P. Chen, "Undistorted 3D microstructures in SU8 formed through two-photon polymerization," AIP Advances, vol. 1, p. 032163, 2011.
[23] C. D. Gerardo, E. Cretu and R. Rohling, "Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications," Sensors, vol. 17, no. 6, p. 1420, 2017.
[24] M. Angelopoulos, "Conducting polymers in microelectronics," IBM Journal of Research and Development, vol. 45, no. 1, pp. 57-75, 2001.
[25] A. Airoudj, D. Debarnot, B. Bêche and F. Poncin-Epaillard, "Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite," Talanta, vol. 77, no. 5, pp. 1590-1596, 2009.
[26] A. Khosla and C. Patel, "Microfabrication and characterization of UV micropatternable, electrically conducting polyaniline photoresist blends for MEMS applications," Microsystem Technologies, vol. 22, no. 2, pp. 371-378, 2016.
[27] T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Optics Express, vol. 13, no. 4, pp. 1275-1280, 2005.
[28] S. Jiguet, A. Bertsch, H. Hofmann and P. Renaud, "Conductive SU8 Photoresist for Microfabrication," Advanced Functional Materials, vol. 15, no. 9, pp. 1511-1516, 2005.
[29] C. Grimaldi, M. Mionić, R. Gaal, L. Forró and A. Magrez, "Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites," Applied Physics Letters, vol. 102, no. 22, p. 223114, 2013.
[30] M. Mionić, S. Jiguet, M. Judelewicz, L. Forró and A. Magrez, "Preparation and characterization of SU8–carbon nanotube composites," Physica Status Solidi (b), vol. 246, no. 11-12, pp. 2461-2464, 2009.
[31] R. Nakamura, K. Kinashi, W. Sakai and N. Tsutsumi, "Fabrication of the silver structure through two-photon excitation by femtosecond laser," Chemical Physics Letters, vol. 610, pp. 241-245, 2014.
[32] N. Tsutsumi, K. Nagata and W. Sakai, "Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth," Applied Physics A, vol. 103, no. 2, pp. 421-426, 2011.
[33] R. Nakamura, K. Kinashi, W. Sakai and N. Tsutsumi, "Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation," Physical Chemistry Chemical Physics, vol. 18, no. 25, pp. 17024-17028, 2016.
[34] W. J. Peveler and I. P. Parkin, "Rapid synthesis of gold nanostructures with cyclic and linear ketones," RSC Advances, vol. 3, no. 44, pp. 21919-21927, 2013.
[35] J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong and S. H. Ko, "Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications," ACS Applied Materials & Interfaces, vol. 8, no. 18, pp. 11575-11582, 2016.
[36] C. J. Robin , A. Vishnoi and K. N. Jonnalagadda, "Mechanical Behavior and Anisotropy of Spin-Coated SU-8 Thin Films for MEMS," Journal of Microelectromechanical Systems, vol. 23, no. 1, pp. 168-180, 2014.
[37] J. R. Salgueiro, V. Moreno and J. Liñares, "Model of linewidth for laser writing on a photoresist," Applied Optics, vol. 41, no. 5, pp. 895-901, 2002.
[38] J. Melai, C. Salm, S. Smits, Visschersan and J. Schmitz, "The electrical conduction and dielectric strength of SU-8," Journal of Micromechanics and Microengineering, vol. 19, no. 6, p. 065012, 2009.


指導教授 何正榮 審核日期 2018-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明