博碩士論文 104327023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.15.237.123
姓名 李勝楠(Sheng-Nan Li)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 復建工程之有效慣性感測訊號篩選機制研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大量收集之訊號的有效性確認,對於後續分析處理以達到現象探討及問題解析目的,
扮演了重要角色,本研究以復建工程中常擷取的慣性感測訊號為例,發展一訊號前處理
及篩選系統,以利使用者判別其有效及可用與否,減少巨量資料中的無效數據,及其混
淆問題探討的影響;此外,有助於非專業人員的後續數據使用,可避免錯誤判斷。
本研究之慣性感測訊號篩選系統分三部分:
(1) 資料清理與整合:資料格式確認及漏點判斷,並以頻譜分析提出資料主要頻分量,
再資料整合為一平面檔(flat file)。
(2) 資料選擇與轉換:透過正常行走、在肩前舉、在肩外抬與肩外轉四種經常復健動作,
判斷動作共通頻率,選擇符合此頻率範圍之動作資料,將IMU 三軸主要頻率值繪於
三維空間,為後續資料挖掘之便利,使用座標轉換降低維度。
(3) 資料挖掘:復健動作為反覆且週期性,IMU 三軸主要頻率應相同,因環境雜訊影響
造成些微差異,故建立資料容忍範圍,收納可用資料。
建立篩選器後,研究中另外使用無線慣性感測器,先以上述動作設計模擬訊號,驗證系
統成效;再行檢視於北榮和三總收案之復健動作訊號,確認在臨床環境的有效性,並將
結果以混淆矩陣顯示。本研究所開發之系統除可快速篩選大量復健動作資料,也可提供
使用者立即判斷收錄資料之有效性,協助非工程人員、遠端復健之病患在復健療程資料
之運用。
摘要(英) In order to make sure the data can be used for subsequent analysis to achieve the purpose of
phenomena discussion and problem analysis, it is important to confirm the validity of the collected data.
This thesis developed a signal preprocessing and screening system to determine the availability of
inertial sensing signals, which often retrieved in the rehabilitation-engineering. This screening system
reduces the impact of bad data by reducing large amount of invalid data. In addition, the system helps
non-professionals to use data and avoid false judgments.
The function of the proposed screening system of this thesis can be divided into three parts:
(1) Data Cleaning and Integration: Confirm the data format and determine the data loss, find the
principal frequency by the spectrum analysis, and integrate the data into a flat file
(2) Data Selection and Conversion: Input motion data can be filtered by 4 common rehabilitation
actions, including walking, shoulder flexion, shoulder abduction and external rotation, which have the
same frequency range. After spectrum analysis, the main three-axis principal frequencies values drawn
in three-dimensional space. Coordinate transformations was used to reduce the dimensions to enhance
the performance of data mining,
(3) Data Mining: The three main IMU frequencies should be the same due to the repetitive and
periodic characteristic of rehabilitation actions. Since slight differences caused by environmental noise,
data tolerance range was established to collect available information.
The function of the proposed screening system was validated by the simulation action data
collected from wireless IMU. This paper also uses the signals of rehabilitation actions measured in the
hospital to confirm the validity in the clinical setting. The result was displayed in a confusion matrix.
The system developed in this study can not only rapidly screen a large number of rehabilitation action
data, but also provide the user to quick judgment on the validity of the input data.
關鍵字(中) ★ 復建工程
★ 資料挖掘
★ 慣性感測器
關鍵字(英)
論文目次 摘要 ................................................................................................................................... I
Abstract ............................................................................................................................ II
誌謝 ................................................................................................................................ III
目錄 ................................................................................................................................ IV
圖目錄 ............................................................................................................................. VI
表目錄 ............................................................................................................................. IX
第一章 緒論 ................................................................................................................ 1
1-1 研究動機與背景 ........................................................................................................... 1
1-2 文獻回顧 ....................................................................................................................... 3
1-3 研究範疇 ....................................................................................................................... 4
第二章 基礎理論 ........................................................................................................ 5
2-1 傅立葉轉換 ................................................................................................................... 5
2-2 三階樣條內插 ............................................................................................................... 6
2-3 空間座標變換 ............................................................................................................... 8
2-3-1 座標旋轉 .................................................................................................................. 8
2-3-2 尤拉角 ...................................................................................................................... 9
2-4 常態分佈 ....................................................................................................................... 9
2-4-1 多元常態分布 ........................................................................................................ 10
2-5 混淆矩陣 ..................................................................................................................... 11
第三章 無線傳輸慣性感測模組與資料預篩選系統 .............................................. 12
3-1 無線慣性感測模組 ..................................................................................................... 12
3-2 篩選系統 ..................................................................................................................... 14
3-2-1 系統設計 ................................................................................................................ 14
3-2-2 不良訊號篩選範圍 ................................................................................................ 20
3-2-3 資料篩選介面 ........................................................................................................ 24
第四章 結果驗證 ...................................................................................................... 26
V
4-1 實驗驗證 ..................................................................................................................... 27
4-1-1 模擬動作訊號 ........................................................................................................ 27
4-1-2 分類驗證 ................................................................................................................ 29
4-2 實際收案資料之驗證 ................................................................................................. 31
4-3 陣攣訊號篩選 ............................................................................................................. 35
第五章 結論與展望 .................................................................................................. 41
5-1 結論 ............................................................................................................................. 41
5-2 未來展望 ..................................................................................................................... 42
參考文獻 .......................................................................................................................... 43
附錄一 .............................................................................................................................. 48
附錄二 .............................................................................................................................. 51
附錄三 .............................................................................................................................. 52
參考文獻 [1] W. Kong, K. Saito, Z. Lin, M. Zecca, S. Sessa, U. Imtiaz, S. Cosentino, L. Bartolomeo,
H. Ishii, T. Ikai, A. Takanishi and C. Wang, “Development of a real-time IMU-based
motion capture system for gait rehabilitation,” Proceeding of 2013 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 2100-2105, 2013.
[2] V. Bonnet, V. Joukov, D. Kulic, P. Fraisse, N. Ramdani, and G. Venture, “Monitoring of
Hip and Knee Joint Angles Using a Single Inertial Measurement Unit During Lower Limb
Rehabilitation,” IEEE Sensors Journal, vol. 16, no. 6, pp. 1557-1564, 2016.
[3] P. Picerno, V. Viero, M. Donati, T. Triossi, V. Tancredi and G. Melchiorri, “Ambulatory
assessment of shoulder abduction strength curve using a single wearable inertial sensor,”
Journal of Rehabilitation Research & Development, vol. 52, no. 2, pp. 171-180, 2015.
[4] B. S. Lin, P. C. Hsiao, S. Y. Yang, C. S. Su and I. J. Lee, “Data Glove System Embedded
with Inertial Measurement Units for Hand Function Evaluation in Stroke Patients,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp.
2204-2213, 2017.
[5] D. Giansanti, S. Maccioni and G.Costantini, “Toward the design of a wearable system for
fall-risk detection in telerehabilitation,” TELEMEDICINE and e-HEALTH, vol. 15, no. 3,
pp. 296-299, 2009.
[6] J. Kim, S. Yang, M. Gerla, “StrokeTrack Wireless Inertial Motion Tracking of Human
Arms for Stroke Telerehabilitation,” Proceeding of the First ACM Workshop on Mobile
System, Applications, and Services for Healthcare, 2011.
[7] 亓恆毅, “應用於中風後復健之無線慣性量測系統開發與復健成效量化評估方法研
究,” 國立中央大學, 碩士論文, 2013.
[8] 何政易, “Wireless Preipheral Measurement and Data Processing for gait Assessment of
Knee Osteoarthritis Patients,” 國立中央大學, 碩士論文, 2016.
44
[9] 陳柏全, “應用於中風後肩關節復健之慣性量測系統開發與新量化評估方法,” 國立中
央大學, 碩士論文, 2012.
[10] P. Kinney, “Zigbee technology: Wireless control that simply works,” Zigbee Alliance,
2003.
[11] E. Jovanov, A. Milenkovic, C. Otto and P. C. de Groen, “A wireless body area network of
intelligent motion sensors for computer assisted physical rehabilitation,” Journal of
NeuroEngineering and Rehabilitation, vol. 2, no. 6, pp. 1-10, 2005.
[12] C. Otto, A. Milenkovic, C. Sanders and E. Jovanov, “System architecture of a wireless
body area sensor network for ubiquitous health monitoring,” Journal of Mobile
Multimedia, vol. 1, no. 4, pp. 307-326, 2006.
[13] 黃鉦傑, “Study of Wireless Inertial Sensing System and Limb Motion Trajectory
Reconstruction,” 國立中央大學, 碩士論文, 2014.
[14] L. Kong, M. Xia, X. Y. Liu, G. Chen, Y. Gu, M. Y. Wu and X. Liu, “Data loss and
reconstruction in wireless sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 11, pp. 2818-2828, 2014.
[15] S. L. Han, M. J. Xie, C. C. Chien, Y. C. Cheng and C. W. Tsao, “Using MEMS-based
inertial sensor with ankle foot orthosis for telerehabilitation and its clinical evaluation in
brain injuries and total knee replacement patients,” Microsystem Technologies, vol. 22,
no. 3, pp. 625-634, 2016.
[16] J. Han, J. Pei and M. Kamber, Data mining: concepts and techniques, 2nd ed., Elsevier,
2011.
[17] C. F. Chien and L. F. Chen, “Data mining to improve personnel selection and enhance
human capital: A case study in high-technology industry,” Expert Systems with
Applications, vol. 34, no. 1, pp. 280-290, 2008.
[18] G. Kesavaraj and S. Sukumaran, “A study on classification techniques in data mining,”
45
Procceding of 2013 Fourth International Conference on IEEE, Communications and
Networking Technologies (ICCCNT), 2013.
[19] L. Xu, C. Jiang, J. Wang, J. Yuan and Y. Ren, “Information security in big data: privacy
and data mining,” IEEE Access, vol. 2, pp. 1149-1176, 2014.
[20] W. K. Härdle and L. Simar, Applied multivariate statistical analysis, 3rd ed., Springer,
2012.
[21] P. N. Tan, M. Steinbach and V. Kumar, Introduction to data mining, 1st ed., Addison
Wesley, 2005.
[22] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters, vol. 27, no.
8, pp. 861-874, 2006.
[23] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, 3rd ed., Pearson,
2010.
[24] S. C. Chapra, Applied Numerical Methods with MATLAB® for Engineers and Scientists,
3rd ed., McGraw Hill, 2012
[25] M. D. Shuster, “Survey of attitude representations,” Journal of the Astronautical Sciences,
vol. 41, no. 4, pp. 439-517, 1993.
[26] R. M. Brannan, “Rotation: A review of useful theorems involving proper orthogonal
matrices referenced to three-dimensional physical space,” 2002 [Online]. Available:
http://www.mech.utah.edu/ ~brannon/public/rotation.pdf
[27] G. B. Arfken, H. J. Weber, Mathematical methods for physicists, 6th ed., ELSEVIER, 2005
[28] N. Balakrishnan, Continuous multivariate distributions, 2nd ed., John Wiley & Sons, 2006.
[29] J. Davis, M. Goadrich, “The Relationship Between Precision-Recall and ROC Curves,”
Proceeding of the 23rd International Conference on Machine Learning, pp.233-240, 2006.
[30] Analog Devices, “3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer,” ADXL345
datasheet, 2010.
46
[31] InvenSense, “ITG-3200 Product Specification Revision 1.4,” ITG-3200 datasheet, 2010.
[32] Honeywell, “3-Axis Digital Compass IC,” HMC5843 datasheet, 2009.
[33] Atmel, “Atmel AVR 8-Bit Microcontroller,” ATmega328 datasheet, 2015.
[34] Digi, “XBee®/XBee-PRO® RF Modules,” XBee datasheet, 2012.
[35] F. Visi, T. Georgiou, S. Holland, O. Pinzone, G. Donaldson and J. Tetley, “Assessing the
Accuracy of an Algorithm for the Estimation of Spatial Gait Parameters Using Inertial
Measurement Units: Application to Healthy Subject and Hemiparetic Stroke Survivor,”
Proceedings of the 4th International Conference on Movement Computing, 2017.
[36] S. Hesse, C. Werner, D. Uhlenbrock, S. v. Frankenberg, A. Bardeleben and B. Brandl,
“An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients:
preliminary results,” Neurorehabilitation and neural repair, vol. 15, no.1, pp. 39-50,
2001
[37] J. Weidow, R. Tranberg, T. Saari, J. Karrholm,” Hip and Knee Joint Rotations Differ
between Patients with Medial and Lateral Knee Osteoarthritis: Gait Analysis of 30 Patients
and 15 Control,” Journal of Orthopaedic Research, vol. 24, no. 9, pp. 1890-1899, 2006
[38] M. R. Dimitrijevic, P. W. Nathan and A. M. Sherwood, "Clonus: the role of central
mechanisms," Journal of Neurology, Neurosurgery and Psychiatry, vol. 43, no. 4, pp.
321-332, 1980.
[39] T. Ji, “Frequency and velocity of people walking,” Structural Engineer, vol. 84, no. 3, pp.
36-40, 2005.
[40] M. W. Whittle, Gait analysis: an introduction, 4th ed., Butterworth-Heinemann, 2007.
[41] E. H. Sibley and K. W. Miller,” RANDOM NUMBER GENERATORS: GOOD ONES
ARE HARD TO FIND,” Communications of the ACM, vol. 31, no. 10, 1988.
[42] D. M. Wallace, B. H. Ross and C. K. Thomas, “Motor unit behavior during clonus,”
Journal of Applied Physiology, vol. 99, no. 6, pp. 2166-2172, 2005.
47
[43] I. Boyraz, H. Uysal, B.Koc and H. Sarman, “Clonus: definition, Mechanism, treatment,”
Medicinski Glasnik, vol. 12, no. 1, 19-26, 2015.
[44] 臺中榮民總醫院復健科, “ 臺中榮總復健科復健醫學講義,”
Internet:https://www.vghtc.gov.tw/GipOpenWeb/wSite/public/Attachment/f1475801889
297.pdf, 2017.
[45] S. Naghdi, N. N. Ansari, K. Mansouri and S. Hasson, “A neurophysiological and clinical
study of Brunnstrom recovery stages in the upper limb following stroke,” Brain Injury,
vol. 24, no. 11, pp. 1372-1378, 2010.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2018-3-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明