博碩士論文 104622011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.118.166.180
姓名 賀厚平(Hou-Ping Ho)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 西藏高原東側鮮水河斷裂帶與丹巴背斜之岩石磁學性質與古應力分析
(Rock Magnetism and Paleostress Analysis of Danba Anticline and Xianshuihe Sinistral Fault Zone in the Eastern Tibetan Plateau, China)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 丹巴背斜,位在西藏高原東緣的龍門山造山帶與鮮水河左移斷裂帶之間,是一個快速抬升的區域。西藏高原是早新生代以來印澳板塊和歐亞板塊不斷收斂聚合而形成的產物,然而西藏高原下部地殼的塑性材料向東部流動,並受到揚子地塊的阻擋,因此在西藏高原東緣產生相當複雜的地質構造現象。為了要了解這個地區構造複雜的機制,我們利用應力分析與磁學性質量測這兩個方法。首先,我們到野外測量丹巴背斜到鮮水河斷裂帶之間的斷層擦痕,用來分析該地區的應力狀況,得到丹巴背斜的最大水平主應力走向以NE-SW向為主,鮮水河斷裂帶最大水平主應力走向以WNW-ESE向為主,然而折多山山頂並無明顯統一趨勢,可能是其所屬的貢嘎山花崗岩體為一正花狀構造,部分所受應力並非水平或垂直,軌跡雜亂,統一趨勢,值得後續研究正花狀構造底部至頂部的應力軌跡。此外,我們採集了該地區的低度變質岩樣本,分析樣本中的磁滯曲線以了解磁學性質,再利用X光繞射分析與掃描式電子顯微鏡確認其中的磁性礦物種類。根據前人研究,在低度變質岩地層中初現的磁黃鐵礦可以做為近變質帶與淺變質帶的等變質線,有助於地層對比與大地構造的研究,本研究比較在鮮水河斷裂帶兩側皆有出露的三疊系地層,發現在鮮水河斷裂帶與丹巴背斜之間有磁黃鐵礦分布,其餘地區皆無發現,代表鮮水河斷裂帶的東北側三疊紀地層的變質度已達淺變質帶,配合主應力軸相對位置的結果,表示鮮水河斷裂帶東北側長期以來可能受到褶皺逆衝帶與擠壓走向滑移帶的作用而有抬升現象。
摘要(英) Danba antiform, an area with extreme exhumation, locates between Longmenshan orogen and Xianshuihe sinistral fault zone in the eastern Tibetan Plateau. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. However, the eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence and generated a very complex structural phenomenon. We used two methods, stress analysis and magnetic measurement, to understand the processes and mechanisms of this structural complexity. First, to be aware of the principle compressive stress in this area, we measured slickensides in the field from Danba area to Xianshuihe fault zone to carry out a series of analysis. We then obtained the strike of the maximum principle stress axis is NE-SW in Danba antiform, WNW-ESE in Xianshuihe sinistral fault zone, and no united trend on the peak of Zheduoshan. The possibility is the Gongashan granite which Zheduoshan located is a positive flower structure. Some of the principle stress are not horizontal or vertical here that made the stress trajectories diverse. In addition, in order to understand the magnetic characteristics of low-grade metamorphic rocks in this area, we took samples and processed the rock magnetic measurement of hysteresis loop. Then ensured the component of magnetic minerals by X-ray diffraction analysis (XRD) and Scanning Electron Microscope (SEM). The occurrence of pyrrhotite can be taken as an important isograd between anchizone and epizone in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Our study compared with the Triassic formation which appear both side of Xianshuihe sinistral fault zone, then observed pyrrhotite distributed between Xianshuihe sinistral fault zone and Danba antiform only. No any pyrrotite be found in the other Triassic formation. It means the Triassic formation in the northeast side of Xianshuihe sinistral fault zone is in epizone. The combination of our result shows there are fold-thrust zone and compressive strike-slip zone causing the uplift in the northeast side of Xianshuihe sinistral fault zone in a long period.
關鍵字(中) ★ 丹巴
★ 鮮水河斷裂帶
★ 應力分析
★ 磁滯曲線
★ 磁黃鐵礦
關鍵字(英) ★ Danba
★ Xianshuihe sinistral fault zone
★ stress analysis
★ hysteresis loop
★ pyrrhotite
論文目次 目錄
中文摘要 i
英文摘要 ii
致謝 iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章、緒論 1
第二章、區域地質與構造背景 4
2-1 區域地理位置 4
2-2岩石地層特徵與環境 4
瑪多-馬爾康地層分區 5
康定雜岩 6
貢嘎山花崗岩 6
2-3變質相特徵 6
龍門山後山變質岩區 6
松潘-甘孜變質區 7
康定-攀枝花變質區 7
2-4鮮水河斷裂帶分段性、活動特徵與觀測結果 7
2-5鮮水河斷裂帶古地震事件紀錄 9
2-6印支期以來的大地構造演化歷史 11
第三章、斷層力學分析 24
3-1野外觀察與測量 24
3-1-1相對時間的判斷 25
3-1-2斷層特徵觀察及滑動形式的判定 25
3-1-3下半球投影(Lower-hemisphere projection) 26
3-2室內計算應力分析張量 27
第四章、低度變質岩之磁學性質研究方法 36
4-1磁學特徵研究方法 37
4-1-1 磁滯曲線(Magnetic hysteresis loop) 37
4-1-2 殘磁曲線(Remanence Curve) 38
4-1-3 Day plot分析 38
4-2磁選與X光粉末繞射分析 38
4-3 SEM觀察與EDS分析 39
第五章、結果 44
5-1斷層分析結果 44
5-1-1丹巴背斜古應力分布 44
5-1-2鮮水河斷裂帶古應力分布 45
5-1-3折多山(貢嘎山花崗岩)古應力分布 46
5-2丹巴背斜和鮮水河斷裂周圍岩石磁學性質 47
第六章、討論 74
6-1最大水平主應力與大地構造 74
6-2 主應力軸和φ值與地體構造討論 76
6-3三疊系極低度變質帶與低度變質帶之變質相討論 77
6-4磁黃鐵礦分布之大地構造意義 79
第七章、結論 87
參考文獻 89
中文文獻 89
英文文獻 93
附錄一 98

表目錄
表2. 1、巴顏喀拉地層區瑪多-馬爾康分區沉積岩建造組合特徵簡表 15
表2. 2、中國四川省西部變質地質單元劃分 17
表4. 1、常見黏土礦物與磁性礦物X光繞射峰位置整理 42
表5. 1、主應力軸結果 49

圖目錄
圖1. 1、本研究區域位置 3
圖1. 2、西藏高原與周邊地區地體構造 3
圖2. 1、鮮水河斷裂帶分段與1725年以來古地震破裂面分布圖 18
圖2. 2、本研究區行政區域圖與交通圖 19
圖2. 3、四川西部丹巴背斜與鮮水河斷裂帶地質圖 20
圖2. 4、四川西部丹巴背斜與鮮水河斷裂帶變質地質圖 21
圖2. 5、西藏高原東緣自印支構造期以來大地構造演化 22
圖2. 6、松潘-甘孜造山帶大規模滑脫造山作用構造演化模式 23
圖2. 7、楊子地塊被動大陸邊緣在印支期的變形作用 23
圖3. 1、斷層面上常見之次生構造 32
圖3. 2、下半球投影 32
圖3. 3、Wulff Net等角度投影與Schmidt Net等面積投影之異同 33
圖3. 4、Wulff Net等角度投影與Schmidt Net等面積投影的投影方式與基本公式 33
圖3. 5、Wulff Net等角度投影所產生的投影放大效應 34
圖3. 6、計算所得之結果。 34
圖3. 7、斷層資料計算應力向量。 35
圖4. 1(a)磁滯曲線。(b)殘磁曲線。(c)磁域(Magnetic domains)示意圖。(d)Day plot 43
圖5. 1、丹巴背斜與鮮水河斷裂帶斷層測量位置圖 52
圖5. 2、丹巴背斜與鮮水河斷裂帶古應力計算結果 53
圖5. 3、古應力最大主應力軸走向分布圖與統計玫瑰圖 54
圖5. 4、丹巴背斜軸部破裂面露頭(圖5. 1中編號2) 55
圖5. 5、丹巴背斜軸部破裂面露頭(圖5. 1中編號3) 56
圖5. 6、丹巴背斜東北翼部破裂面露頭(圖5. 1中編號17) 57
圖5. 7、丹巴背斜西南翼部破裂面露頭(圖5. 1中編號8) 58
圖5. 8、丹巴背斜東北翼部破裂面露頭(圖5. 1中編號11) 59
圖5. 9、鮮水河斷裂雅拉河段破裂面露頭(圖5. 1中編號25) 60
圖5. 10、鮮水河斷裂帶西南部破裂面露頭(圖5. 1中編號40) 61
圖5. 11、鮮水河斷裂帶西南部破裂面露頭(圖5. 1中編號44)。 62
圖5. 12、鮮水河斷裂帶主破裂面露頭(圖5. 1中編號52) 63
圖5. 13、折多山(貢嘎山花崗岩體)山頂破裂面露頭(圖5. 1中編號26) 64
圖5. 14、折多山(貢嘎山花崗岩體)山頂破裂面露頭(圖5. 1中編號29) 65
圖5. 15、折多山(貢嘎山花崗岩體)山頂破裂面露頭(圖5. 1中編號34) 66
圖5. 16、磁性礦物樣本採樣位置圖 67
圖5. 17、磁滯曲線特徵 68
圖5. 18、Day Plot 68
圖5. 19、樣本X光繞射分析(XRD)結果 69
圖5. 20、掃描式電子顯微鏡(SEM)下的磁黃鐵礦(樣本DB-07(A),倍率X500) 70
圖5. 21、掃描式電子顯微鏡(SEM)下的磁黃鐵礦(樣本DB-32(A),倍率X500) 71
圖5. 22、掃描式電子顯微鏡(SEM)下的磁黃鐵礦(樣本KD-02(C),倍率X500) 72
圖5. 23、掃描式電子顯微鏡(SEM)下的磁黃鐵礦(樣本GZ-03(B),倍率X1000) 72
圖5. 24、掃描式電子顯微鏡(SEM)下的磁黃鐵礦(樣本DB-79(A),倍率X100) 73
圖6. 1、前人主應力分布圖 81
圖6. 2、貢嘎山花崗岩體花狀構造 82
圖6. 3、主應力軸和φ值與地體構造之間的關係 83
圖6. 4、變質帶定義 83
圖6. 5、磁黃鐵礦分布地質圖 84
圖6. 6、磁黃鐵礦分布變質地質圖 85
圖6. 7、鮮水河斷裂帶-丹巴背斜地質剖面與磁黃鐵礦分布情形 86

參考文獻 中文文獻
王二七, 孟慶任, 陳智樑, & 陳良忠. (2001). 龍門山斷裂帶印支期左旋走滑運動及其大地構造成因. 地學前緣, 2.
王宗秀, 許志琴和楊天南. (1997). 松潘—甘孜滑脫型山鏈變形構造演化模式. 地質科學, 32(3), 327-336.
王宗秀. (1997). 折多山花崗岩的成因及構造環境. 成都理工學院學報, 24(1), 48-55.
李天祒主編, 鮮水河斷裂帶及強震危險性評估, 四川科學技術出版社, 四川, 1997
易桂喜, 龍鋒, 聞學澤, 梁明劍, & 王思維. (2015). 2014 年 11 月 22 日康定 M6. 3 級地震序列發震構造分析. 地球物理學報, 58(4), 1205-1219.
洪崇勝, 陳國航, 林俊宏, 曾鐘億, 王詠絢, 費立沅, 鐘三雄, 陳松春, 陳柏淳, 魏正岳, 王錦昌. (2016). 臺灣西南外海天然氣水合物潛在賦存區沉積物之岩石磁學性質. 經濟部中央地質調查所特, 第30號, 第 89-122頁
洪崇勝, 陳國航, 林俊宏. (2011).台灣北部橫貫公路低度變質岩之岩石磁學兼論雪山山脈與中央山脈之地層對比. 經濟部中央地質調查所特刊, 第25號, 第167-179頁
胡朝忠, 楊攀新, 梁朋, 蘇鵬, 熊仁偉, 李小強, 陳丹, 李長軍. (2015). 2014 年康定 M_s6. 3 級地震發震斷裂的古地震. 科學通報, 23, 010.
唐文清, 陳智梁, 劉宇平, 張清志, & 趙濟湘. (2005a). 青藏高原東緣鮮水河斷裂與龍門山斷裂交會區現今的構造活動. 地質通報, 24(12), 1169-1172.
唐文清, 劉宇平, 陳智梁, & 黃丁發. (2005b). 鮮水河斷裂及兩側地塊的 GPS 監測. 西南交通大學學報, 40(3), 313-317.
唐文清, 劉宇平, 陳智梁, 張清志, & 趙濟湘. (2007). 基於 GPS 技術的活動斷裂監測——以鮮水河, 龍門山斷裂為例. 山地學報, 25(1), 103-107.
唐榮昌, 錢洪, 張文甫, 張成貴, 曹楊國, & 劉盛利. (1984). 道孚 6.9 級地震的地質構造背景與發震構造條件分析 (Doctoral dissertation).
唐榮昌, 韓渭賓. (1993). 四川活動斷裂與地震, 地震出版社, 北京, 1993
孫建中, & 施順英. (1994). 利用地震矩張量反演鮮水河斷裂帶現今運動學特徵. 地殼形變與地震, 14(4), 9-15.
徐天德. (2009). 康定折多山花崗岩岩石學特徵及其構造意義. 四川地質學報, (S2), 58-64.
徐錫偉, 聞學澤, 鄭榮章, 馬文濤, 宋方敏, & 於貴華. (2003). 川滇地區活動塊體最新構造變動樣式及其動力來源. 中國科學: D 輯, 33(B04), 151-162.
索書田, & 遊振東. (1995). 極低級變質作用和極低級變質帶綜述. 地質科技情報, 14(1), 1-8.
張建東, 胡世華, 秦宇龍, 胡朝雲, 劉嘯虎, 餘如龍, 王康明, 婁康發. (2015) 四川省地質構造與成礦. 科學出版社, 北京.
曹恕中. (1996). 臺灣中央山脈變質沉積岩伊萊石結晶度, 鋯石核飛跡年代和鉀氬年代之地質意義 (Doctoral dissertation, National Taiwan University Department of Geology).
梁斌, 何文勁, 謝啟興, & 朱兵. (2003). 川西北壤塘地區三疊紀西康群極低級變質作用. 礦物岩石, 23(1), 42-45.
陳明, 何文勁, 梁斌, & 謝啟興. (2001). 川西高原西康群極低級變質岩特徵. 四川地質學報, 21(2), 65-69.
陳肇夏, & 王京新. (1995). 台灣變質相圖說明書第二版.
喬學軍, 王琪, & 杜瑞林. (2004). 川滇地區活動地塊現今地殼形變特徵. 地球物理學報, 47(5), 805-811.
彭晉川, 廖華, 顧鐵, & 張翼. (2007). 基於 GPS 連續站觀測資料的鮮水河斷裂運動特徵研究. 四川地震, 2007(4), 14-17.
曾嚴俊. (2012). 西藏東緣鮮水河斷層形成時間與貢嘎山花崗岩體的形成時間及其剝蝕歷史. 中正大學地球與環境科學系應用地球物理與環境科學研究所學位論文, 1-179.
游振東, 程素華, & 賴興運. (2006). 四川丹巴彎狀變質地體. 地學前緣, 13(4), 148-159.
程萬正, & 楊永林. (2002). 川滇地塊邊界構造帶形變速率變化與成組強震. 大地測量與地球動力學, 22(4), 21-25.
程萬正, & 楊永林. (2002). 川滇地塊邊界構造帶形變速率變化與成組強震. 大地測量與地球動力學, 22(4), 21-25.
董鐵柱. (2005). 松潘—甘孜造山帶三疊系極低級變質與變形作用研究 (Master′s thesis, 中國地質大學 (北京)).
賈承造, 何登發, & 陸潔民. (2004). 中國喜馬拉雅運動的期次及其動力學背景. 石油與天然氣地質, 25(2), 121-125.
熊探宇, 姚鑫, & 張永雙. (2010). 鮮水河斷裂帶全新世活動性研究進展綜述. 地質力學學報, 16(2), 176-188.
聞學澤, Allen, C. R., 羅灼禮, 錢洪, 周華偉, & 黃偉師. (1989). 鮮水河全新世斷裂帶的分段性, 幾何特徵及其地震構造意義. 地震學報, 11(4), 362-372.
聞學澤. (2000). 四川西部鮮水河—安寧河—則木河斷裂帶的地震破裂分段特徵. 地震地質, 22(3), 239-249.
鄧天崗主編. (1989). 鮮水河活動斷裂帶. 四川科學技術出版社, 四川
賴興運, 程素華, & 陳軍元. (2003). 中, 低壓變質作用與大陸造山——兼論四川丹巴的變質帶. 地學前緣, 10(4), 327-339.
錢洪, 羅灼禮, 聞學澤, 周華偉, & 黃偉師. (1988). 全新世以來鮮水河斷裂的活動特徵. 中國地震, 4(2), 9-18.
謝富仁, & 祝景忠. (1995). 鮮水河斷裂帶區域第四紀構造應力場的分期研究. 地震地質, 17(1), 35-43.
顏丙雷, 李勇, 賈召亮, 邵崇建, 顏照坤, 劉玉法, 聞亮, 馬景露, 李術江. (2016). 康定 Ms6. 3 地震發震斷裂與震害特徵. 防災科技學院學報, 18(2), 1-9.
譚錫斌, 徐錫偉, 李元希, 陳桂華, & 萬景林. (2010). 貢嘎山快速隆升的磷灰石裂變徑跡證據及其隆升機制討論. 地球物理學報, 53(8), 1859-1867.

英文文獻
Allen, C. R., Luo, Z.L., Qian, H., Wen, X.Z., Zhou, H.W., Huang, W.S., H. (1991). Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103(9), 1178-1199.
Anderson, E. M. (1942). The Dynamics of Faulting: 191 pp.
Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.
Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2), 363-376.
Angelier, J. T., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société géologique de France, 7(6), 1309-1318.
Árkai, P., Sassi, F. P., & Desmons, J. (2007). Very low-to low-grade metamorphic rocks. Cambridge University Press.
Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109-117.
Burchfiel, B. C., & Chen, Z. (Eds.). (2012). Tectonics of the southeastern Tibetan Plateau and its adjacent foreland (Vol. 210). Geological Society of America.
Burchfiel, B. C., Zhiliang, C., Yupinc, L., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8), 661-735.
Carey, E., & Brunier, B. (1974). Analyse theorique et numerique dun modele mtcanique Clementaire applique a l’etude dune population de failles. C. R.-Hebd. Seam. Acad. Sci. Ser. D 279,891, 894.
Carpenter, R. H. (1974). Pyrrhotite isograd in southeastern Tennessee and southwestern North Carolina. Geological Society of America Bulletin, 85(3), 451-456.
Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and planetary interiors, 13(4), 260-267.
Deprat, J., 1914. Étude des plissements et des zones d’écrasement de la moyenne et de la basse rivière Noire. Mémoires du Service Géologique d’Indochine 3–4, 1– 59.
Fromaget, J., 1927. Etudes géologiques sur le Nord de l’Indochine centrale. Bulletins du Service Géologique d’Indochine XVI (frac. 2).
Fromaget, J., 1941. L’Indochine française, sa structure géologique, ses roches, ses mines et leurs relations possibles avec la tectonique. Bulletins du Service Géologique d’Indochine 26 (2), 1–140.
Harrowfield, M. J., & Wilson, C. J. (2005). Indosinian deformation of the Songpan Garze fold belt, northeast Tibetan Plateau. Journal of Structural Geology, 27(1), 101-117.
Horng, C. S., & Roberts, A. P. (2006). Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3), 750-762.
Horng, C. S., Huh, C. A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8).
Kübler B. (1967). La cristallinité de l`illite et les zones tout a fait superieures du métamorphisme. In: Étages tectoniques, Colloque de Neuchâtel 1966, A La Baconniere, Neuchâtel 105-121.
Li, T., Schuster, R. L., & Wu, J. (1986). Landslide dams in south-central China. ASCE.
Molnar, P., & Qidong, D. (1984). Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. Journal of Geophysical Research: Solid Earth, 89(B7), 6203-6227.
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597-608.
Ratschbacher, L., Frisch, W., Chen, C., Pan, G. (1996). Cenozoic deformation, rotation and stress patterns in eastern Tibet and western Sichuan, China. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp. 227–249.
Rochette, P. (1987). Metamorphic control of the magnetic mineralogy of black shales in the Swiss Alps: toward the use of “magnetic isogrades”. Earth and Planetary Science Letters, 84(4), 446-456.
Roger, F., Calassou, S., Lancelot, J., Malavieille, J., Mattauer, M., Zhiqin, X., Ziwen, H. & Liwei, H. (1995). Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): Geodynamic implications. Earth and Planetary Science Letters, 130(1-4), 201-216.
Roger, F., Jolivet, M., & Malavieille, J. (2010). The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. Journal of Asian Earth Sciences, 39(4), 254-269.
Roger, F., Malavieille, J., Leloup, P. H., Calassou, S., & Xu, Z. (2004). Timing of granite emplacement and cooling in the Songpan–Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5), 465-481.
Rowley, D. B. (1996). Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4), 1-13.
Tan, X. B., Lee, Y. H., Xu, X. W., & Cook, K. L. (2017). Cenozoic exhumation of the Danba antiform, eastern Tibet: Evidence from low-temperature thermochronology. Lithosphere, 9(4), 534-544.
Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet Plateau. science, 294(5547), 1671-1677.
Wallis, S., Tsujimori, T., Aoya, M., Kawakami, T., Terada, K., Suzuki, K., & Hyodo, H. (2003). Cenozoic and Mesozoic metamorphism in the Longmenshan orogen: Implications for geodynamic models of eastern Tibet. Geology, 31(9), 745-748.
Wang, X. L., Zhou, J. C., Griffin, W. A., Wang, R. C., Qiu, J. S., O’reilly, S. Y., Xu, X., Liu, X.M., & Zhang, G. L. (2007). Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1), 117-131.
Weaver, C. E. (1960). Possible uses of clay minerals in search for oil. AAPG Bulletin, 44(9), 1505-1518.
Weller, O. M., St‐Onge, M. R., Waters, D. J., Rayner, N., Searle, M. P., Chung, S. L., Palin, R. M., Lee, Y. H., Xu, X. (2013). Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. Journal of Metamorphic Geology, 31(9), 909-935.
Wilson, C. J., Harrowfield, M. J., & Reid, A. J. (2006). Brittle modification of Triassic architecture in eastern Tibet: implications for the construction of the Cenozoic plateau. Journal of Asian Earth Sciences, 27(3), 341-357.
Xu, G., & Kamp, P. J. (2000). Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan Plateau: Constraints from fission track thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8), 19231-19251.
Xu, L., Rondenay, S., & van der Hilst, R. D. (2007). Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the earth and planetary interiors, 165(3), 176-193.
Xu, Z. Q., Hou, L. W., Wang, Z. X., Fu, X. F., & Huang, M. H. (1992). Orogenic processes of the Songpan-Garze orogenic belt of China. Geol. Publ. House, Beijing, 1-235.
Zhang, Y., Dong, S., & Yang, N. (2009). Active Faulting Pattern, Present‐day Tectonic Stress Field and Block Kinematics in the East Tibetan Plateau. Acta Geologica Sinica (English Edition), 83(4), 694-712.
Zhang, Y.S., Yao, X., Yu, K., Du, G.L., Guo, C.B. (2016). Late‐Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2), 525-536.
Zhou, M. F., Yan, D. P., Vasconcelos, P. M., Li, J. W., & Hu, R. Z. (2008). Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan plateau. Journal of Asian Earth Sciences, 33(5), 414-427.
指導教授 張中白 洪崇勝 顏宏元(Chung-Pai Chang Chorng-Shern Horng Horng-Yuan Yen) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明