博碩士論文 104622027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.16.70.101
姓名 黃碧淳(Pi-Chun Huang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣東北海域龜山島北側崩塌與海底山崩研究
(A mass failure in the northern flank of the Kueishantao Island off northeastern Taiwan: Volcanic flank collapse and submarine landslides)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前人根據龜山島上的熔岩流分布研究指出龜山島近 7000 年來至少發生過四次火山噴發事件。除此之外,火山島的噴發事件也常和伴隨的火山側翼崩塌事件有關。龜山島周圍的高精密水深資料顯示海底有岩屑崩落(Debris avalanche),主要分佈在北方以及南方的海域。為瞭解崩塌機制與岩屑崩落的分布情形,本研究主要利用高精密水深、底拖側掃聲納、底質剖面與火花放電波源的震測剖面等資料來研究北方海域崩落事件。水深資料的分析結果顯示岩屑崩落分佈在距離龜山島北側翼的馬蹄鐵狀崩塌口約4公里遠且占據大約 10 平方公里的面積,可辨認出的崩落石塊約有67處,呈現不規則分布且高度約為10到 50 公尺高。從 ROV 觀測的結果發現,研究區域的海床主要以泥質和沙質為主的沉積環境,而且為大小不一的石塊堆疊而成並附著了珊瑚礁等生物在石塊上。
除此之外,震測資料分析結果可大致區分為兩個不同的混亂震測相,第一個混亂震測相主要包含了反射訊號的繞射現象以及不連續的側向反射訊號,本論文定義其為第三個大量沉積物傳輸的堆積單元(MTD3)。至於第二個混亂震測相主要包含不規則的側向反射訊號以及斷斷續續的強振幅反射訊號,以深度分別可定義為第一個和第二個大量沉積物傳輸的堆積單元 (MTD2 和 MTD1)。震測相與分布的情況來看,與島上崩塌口相關的崩塌沉積物主要為 MTD2 和 MTD3。MTD3主要分佈於淺部地層中,在龜山島斜坡地區覆蓋了大約90公尺厚的沉積物
並往東北方向傳遞。另外在 MTD3 的地層中可以進一步辨識滑動不整合面(U3)。因此,根據分佈的特性以及不整合面的位置推測出 MTD3 可能來自於龜山島海底邊坡不穩定所造成的崩塌事件。至於 MTD2 的分布位置主要在較深部的地層中(約為350 ms TWT)且呈現連續的強反射訊號,顯示其質地可能為較硬的岩塊,因此推斷龜山島側翼崩塌事件主要是記錄在 MTD2。最後,本研究提出一個模型來解釋龜山島側翼崩塌以及後續的海底山崩事件。
最後,本研究提出一個新的模型來解釋龜山島側翼崩塌以及後續的海底山崩事件。
摘要(英) Based on the ignimbrite layers, previous studies suggested that Kueishantao volcanic island has probably erupted four times in the past 7000 years. Many studies
have also shown that volcanic eruptions may be highly related to flank collapse events. New multi-beam bathymetric data around Kueishantao volcanic island have revealed the distribution of submarine debris avalanches in the north side. In order to better understand the landslide mechanism, we have studied the northern part of the debris avalanches distribution with marine geophysical data. Using the multi-beam bathymetric, sub-bottom profiler, sidescan sonar, remotely operated vehicle (ROV) dives data and sparker seismic reflection profiles, we have identified the blocky
deposits of a debris avalanche. The debris avalanche is probably related to the horseshoe scar of a volcanic flank collapse. The debris avalanche had a runout distance
up to 4 km northeastward and has covered about 10 km2 of hummocky terrain with individual blocks range from ~10 m to ~50 m high.
The chaotic facies distinguished from the sparker seismic profiles can be divided into two types. The first type contains diffraction hyperbolae reflections and broken or
discontinuous lateral reflections, which are interpreted as mass-transport deposits unit 3 (MTD3). The second type contains irregular lateral reflections and broken high-
amplitude reflections, which are interpreted as mass-transport deposits unit 2 and unit 1 (MTD 2 & MTD 1), respectively. The main landslide deposits recognized from the
chaotic facies are related to MTD2 and MTD3. In general, MTD3 is distributed in the shallow strata with thickness up to 90 m at island slope area. The high-resolution SBP profiles indicate that fine-grained sediments are distributed at island slope and have strong reflections with less sedimentation over the hummocky deposits area. Moreover,
a sliding plane unconformity U3 is recognized from the seismic profiles within the MTD3. Hence, MTD3 could be induced by a slope slumping event and has contributed
the recent morphological features. MTD2 is mainly distributed to the NE of the island and is buried in the deeper strata with strong reflection material. Cross-section seismic
profile line64 indicates that MTD2 can be traced from the Kueishantao Island to downslope. Hence, MTD2 could be associated with the initial flank collapse event.
A new model is proposed for the flank collapse event of the northern Kueishantao Island and a slope slumping event afterwards.
關鍵字(中) ★ 岩屑崩落
★ 陸上山崩
★ 龜山島
關鍵字(英) ★ debris avalanches
★ subaerial landslide
★ Kueishantao island
論文目次 Contents
Chinese Abstract .......................................... I
English Abstract ......................................... II
Acknowledgment .......................................... III
Contents ................................................. IV
List of Tables ........................................... VI
List of Figures .......................................... VI
Chapter 1 . Introduction .................................. 1
1.1 Previous studies of volcanic island landslides ........ 1
1.2 Terminology ........................................... 2
1.3 Motivation and goals................................... 4
Chapter 2 . Geological setting and background ............. 9
2.1 General background .................................... 9
2.2 Geology of Kueishantao Island ........................ 10
2.3 Morphology of study area ............................. 11
Chapter 3 . Method and data processing ................... 20
3.1 Multibeam Echo Sounder: MBES ......................... 20
3.1.1 ATLAS HYDROSWEEP MD/50 ............................ 20
3.1.2 Kongsberg EM710 ................................... 22
3.2 High resolution deep-towed sonar data................. 31
3.2.1 Side-Scan Sonar introduction ...................... 31
3.2.2 Sub-bottom profiler introduction .................. 31
3.2.3 Data acquisition and processing.................... 32
3.2.4 Sub-bottom profiler noise problems and solutions .. 34
3.3 Sparker seismic-reflection data ...................... 47
3.3.1 Sparker data introduction ......................... 47
3.3.2 Sparker data acquisition .......................... 47
3.3.3 Sparker data processing work flow ................. 48
3.4 Remotely operated underwater vehicle (ROV) images .... 66
Chapter 4 . Landslide distribution and characteristics ... 69
4.1 Characteristics of the seafloor ...................... 69
4.1.1 Multibeam data analysis ........................... 69
4.1.2 Surficial seafloor features ....................... 70
4.2 Seismic stratigraphic analysis and interpretation .... 72
4.2.1 Seismic stratigraphic analysis .................... 72
4.2.2 Sequence boundary ................................. 73
4.2.3 Seismic data interpretation ....................... 73
4.3 Structural features .................................. 78
Chapter 5 . Conclusions ................................. 132
Bibliography .............................................136
參考文獻 Assier-Rzadkieaicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., and Bourillet, J. F., Numerical Modelling of a Landslide-generated Tsunami: The 1979 Nice Event, pure and applied geophysics, v. 157, no. 10, p. 1707-1727, 2000.
Bellefleur, G., Duchesne, M. J., Hunter, H., Long, B. F., and Lavoie, D., Comparison of single-and multichannel high-resolution seismic data for shallow stratigraphy mapping in the St. Lawrence River estuary, Geol. Surv. Can. D, v. 2, p. 1-10, 2006.
Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., and Kvalstad, T. J., Explaining the Storegga Slide, Marine and Petroleum Geology, v. 22, no. 1, p. 11-19, 2005.
Cannelli, G. B., D′ottavi, E., High-power acoustic-wave system for marine environment surveying, in Proceedings OCEANS′91. Ocean Technologies and Opportunities in the Pacific for the 90′s. Proceedings. Volume 1, IEEE, p. 482-487, 1991.
Chang, H.-P., Seafloor sediment characteristics in the Okinawa Trough and around the Kueishantao volcanic island offshore NE Taiwan [Master thesis in Chinese]: National Central University, Taiwan, 112 p, 2011.
Chang, J.-C., Liu, Y.-H., and Chang, C.-T., Field Observations of Tide,Current ,and Waves around Gueisantao, Proceedingsofthe 22nd Ocean Engineering Conferencein Taiwan, 2000.
Chang, K.-H., Mineral constituents and sources of submarine core sediments near Kueishantao Island, northeast Taiwan [Master thesis in Chinese]: National Sun Yat-sen University, Taiwan, 100 p, 2013.
Chen, Y.-G., Wu, W.-S., Chen, C.-H., and Liu, T.-K., A date for volcanic eruption inferred from a siltstone xenolith, Quaternary science reviews, v. 20, no. 5, p. 869-873, 2001.
Chiang, H.-T., The geothermal study in Ilan Plain and Kueishantao in northeastern Taiwan [Ph. D. thesis in Chinese]: National Taiwan University, Taiwan, 106 p, 2010.
Chiocci, F. L., and De Alteriis, G., The Ischia debris avalanche: first clear submarine evidence in the Mediterranean of a volcanic island prehistorical collapse, Terra Nova, v. 18, no. 3, p. 202-209, 2006.
Chiu, C.-L., Song, S.-R., Hsieh, Y.-C., and Chen, C.-X., Volcanic characteristics of Kueishantao in northeast Taiwan and their implications, Terr Atmos Ocean Sci, v. 21, no. 3, p. 575-585, 2010.
Crandell, D. R., Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation, 1989.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., and Stark, C. P., Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, v. 426, no. 6967, p. 648-651, 2003.
Day, S., Llanes, P., Silver, E., Hoffmann, G., Ward, S., and Driscoll, N., Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea, Marine and Petroleum Geology, v. 67, p. 419-438, 2015.
Deffontaines, B., Liu, C.-S., Jacques, A., Lee, C.-T., Sibuet, J. C., Tsai, Y.-B., Lailemand, S., Lu, C.-Y., Lee, C.-S., Hsu, S.-K., and Chu, H.-T., Preliminary neotectonic map of onshore-offshore Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, p. 339-349, 2001.
Deplus, C., Le Friant, A., Boudon, G., Komorowski, J. C., Villemant, B., Harford, C., Ségoufin, J., and Cheminée, J. L., Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc, Earth and Planetary Science Letters, v. 192, no. 2, p. 145-157, 2001.
Duchesne, M. J., and Bellefleur, G., Processing of single channel, high resolution seismic data collected in the St. Lawrence estuary, Quebec, Geological survey of Canada, 2007.
Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomsonb, R. E., and Kulikovbc, E. A., The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling, Marine Geology, v. 215, no. 1-2, p. 45-57, 2005.
Glicken, H., Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington, 96-677, 1996.
Hürlimann, M., Martı́, J., and Ledesma, A., Morphological and geological aspects related to large slope failures on oceanic islands: The huge La Orotava landslides on Tenerife, Canary Islands, Geomorphology, v. 62, no. 3, p. 143-158, 2004.
Haflidason, H., Sejrup, H. P., Berstad, I. M., Nygard, A., Richter, T., Bryn, P., Lien, R., and Berg, K., A Weak Layer Feature on the Northern Storegga Slide Escarpment, in Mienert, J., and Weaver, P., eds., European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images: Berlin, Heidelberg, Springer Berlin Heidelberg, p. 55-62, 2003.
Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., Smebye, H., Gauer, P., and Kjekstad, O., Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios, Continental Shelf Research, v. 38, p. 1-23, 2012.
Highland, L., and Bobrowsky, P. T., The landslide handbook: a guide to understanding landslides. 2008.
Hsu, H.-H., Shallow Sedimentary Structures and Sediment Transport Processes on the Ilan Shelf. [Master thesis in Chinese]: National Taiwan University, Taiwan, 99 p, 2007.
Hsu, L. -C., Petrology of the Pleistocene andesite from Kueishantao, Northern Taiwan., Acta Geol. Taiwan., v. 10, p. 29-40, 1963.
Hsu, B.-H., Geological Structure of South Okinawa Trough: A Reflection Seismic Interpretation [Master Thesis in Chinese]: National Central University, Taiwan 60 p, 1999.
Johnson, H. P., and Helfert, M., The geological interpretation of side-scan sonar Geophysics, v. 28, no. 4, p. 357-380, 1990.
Juang, W.-S., and Chen, J.-C., Geochronology and geochemistry of volcanic rocks in northern Taiwan, Bulletin of Central Geological Survey, no. 5, p. 31-66, 1985.
Kimura, M., Back-arc rifting in the Okinawa Trough, Marine and Petroleum Geology, v. 2, no. 3, p. 222-240, 1985.
Kuo, F.-W., Preliminary investigation of shallow hydrothermal vents on Kueishantao islet of northeastern Taiwan [Master thesis in Chinese]: National Sun Yat-Sen University, Taiwan, 90 p, 2001.
Lee, I.-L., The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough [Master thesis in Chinese]: National Taiwan Ocean University, Taiwan, 55 p, 2005.
Lee, I.-H., and Hu, J.-H., The Relation between the I-Lan Bight Water and the Shelf Water Northeast of Taiwan, ACTA Oceanographica Taiwanica, v. 37, no. 1, p. 89-103, 1998.
Letouzey, J., and Kimura, M., The Okinawa Trough: genesis of a back-arc basin developing along a continental margin, Tectonophysics, v. 125, no. 1-3, p. 209-230, 1986.
Lewis, K. B., Slumping on a continental slope inclinced at 1°–4°, Sedimentology, v. 16, no. 1-2, p. 97-110, 1971.
Lin, J.-Y., Hsu, S.-K., and Sibuet, J. C., Melting features along the western Ryukyu slab edge (northeast Taiwan): tomographic evidence, Journal of Geophysical Research: Solid Earth, v. 109, no. B12, 2004.
Ling, C.-Y., The distribution and sources of seismo-turbidites in the Southern Okinawa Trough [Master thesis in Chinese]: National Taiwan University, Taiwan, 74 p, 2007.
Longva, O., Janbu, N., Blikra, L. H., and Bøe, R., The 1996 Finneidfjord Slide; Seafloor Failure and Slide Dynamics, in Locat, J., Mienert, J., and Boisvert, L., eds., Submarine Mass Movements and Their Consequences: 1st International Symposium: Dordrecht, Springer Netherlands, p. 531-538, 2003.
Masson, D. G., Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands, Geology, v. 24, no. 3, p. 231-234, 1996.
Masson, D. G., Canals, M., Alonso, B., Urgeles, R., and Huhnerbach, V., The Canary Debris Flow: source area morphology and failure mechanisms, Sedimentology, v. 45, no. 2, p. 411-432, 1998.
Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Løvholt, F., Submarine landslides: processes, triggers and hazard prediction, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 364, no. 1845, p. 2009-2039, 2006.
Masson, D. G., Watts, A. B., Gee, M. J. R., Urgeles, R., Mitchell, N. C., Le Bas, T. P., and Canals, M., Slope failures on the flanks of the western Canary Islands, Earth-Science Reviews, v. 57, no. 1, p. 1-35, 2002.
Moore, J. G., Bryan, W. B., and Ludwig, K. R., Chaotic deposition by a giant wave, Molokai, Hawaii, Geological Society of America Bulletin, v. 106, no. 7, p. 962-967, 1994.
Matsumoto, K., Takanezawa, T., and Ooe, M., Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan, Journal of Oceanography, v. 56, no. 5, p. 567-581, 2000.
Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., and Torresan, M. E., Prodigious submarine landslides on the Hawaiian Ridge, Journal of Geophysical Research: Solid Earth, v. 94, no. B12, p. 17465-17484, 1989.
Mosher, D. C., and Simpkin, P. G., Environmental marine Geoscience 1. Status and trends of marine high-resolution seismic reflection profiling: Data acquistion, Geoscience Canada, v. 26, no. 4, 1999.
Mulder, T., and Cochonat, P., Classification of offshore mass movements, Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, p. Medium: X; Size: pp. 43-57, 1996.
O′Leary, D. W., Structure and morphology of submarine slab slides: Clues to origin and behavior, Marine Geotechnology, v. 10, no. 1-2, p. 53-69, 1991.
Piper, D. J. W., Cochonat, P., and Morrison, M. L., The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar, Sedimentology, v. 46, no. 1, p. 79-97, 1999.
Prior, D. B., and Coleman, J. M., Active Slides and Flows in Underconsolidated Marine Sediments on the Slopes of the Mississippi Delta, in Saxov, S., and Nieuwenhuis, J. K., eds., Marine Slides and Other Mass Movements: Boston, MA, Springer US, p. 21-49, 1982.
Sheriff, R. E., Encyclopedic dictionary of applied geophysics, Society of Exploration Geophysicists, p. 429, 2005.
Sibuet, J. C., Deffontaines, B., Hsu, S.-K., Thareau, N., Formal, L., and Liu, C.-S., Okinawa trough backarc basin: early tectonic and magmatic evolution, Journal of Geophysical Research: Solid Earth, v. 103, no. B12, p. 30245-30267, 1998.
Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., Hilde, T. W., Kimura, M., Chiao, L. Y., Marsset, B., and Muller, C., Back arc extension in the Okinawa Trough, Journal of Geophysical Research: Solid Earth, v. 92, no. B13, p. 14041-14063, 1987.
Siebert, L., Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions, Journal of Volcanology and Geothermal Research, v. 22, no. 3, p. 163-197, 1984.
Song, S.-R., The Kueishantau -- An Active Volcanic Island of Taiwan, 2013.
Sultan, N., Cochonat, P., Foucher, J. P., Mienert, J., Haflidason, H., and Sejrup, H. P., Effect of gas hydrates dissociation on seafloor slope stability. Submarine Mass Movements and Their Consequences, 103-111, 2003.
Talling, P. J., Masson, D. G., Sumner, E. J., and Malgesini, G., Subaqueous sediment density flows: Depositional processes and deposit types, Sedimentology, v. 59, no. 7, p. 1937-2003, 2012.
Talling, P. J., Peakall, J., Sparks, R. S. J., Cofaigh, C. Ó., Dowdeswell, J. A., Felix, M., ... & Taylor, J., Experimental constraints on shear mixing rates and processes: implications for the dilution of submarine debris flows. Geological Society, London, Special Publications, 203(1), 89-103, 2002.
Teng, L.-S., Extensional collapse of the northern Taiwan mountain belt, Geology, v. 24, no. 10, p. 949-952, 1996.
Trabant, P. K., Applied high-resolution geophysical methods: offshore geoengineering hazards, Springer Science & Business Media. 2013.
Varnes, D. J., Landslide types and processes, Landslides and engineering practice, v. 24, p. 20-47, 1958.
Verbeek, N. H., and McGee, T. M., Characteristics of high-resolution marine reflection profiling sources, Journal of Applied Geophysics, v. 33, no. 4, p. 251-269, 1995.
Ward, S. N., and Day, S., Cumbre Vieja volcano—potential collapse and tsunami at La Palma, Canary Islands, Geophysical Research Letters, v. 28, no. 17, p. 3397-3400, 2001.
Weaver, P. P. E., and Kuijpers, A., Climatic control of turbidite deposition on the Madeira Abyssal plain., Nature, v. 306, p. 360-363, 1983.
Wessel, P., and Smith, W. H., New, improved version of Generic Mapping Tools released, Eos, Transactions American Geophysical Union, v. 79, no. 47, p. 579-579, 1998.
Wright, J. V., and Cas, R., Volcanic successions, modern and ancient: a geological approach to processes, products, and successions, London; Boston: Allen & Unwin/Chapman & Hall. 1988.
Yang, T. F., Lan, T. F., Lee, H.-F., Fu, C.-C., Chuang, P.-C., Lo, C.-H., Chen, C.-H., Chen, C. T. A., and Lee, C.-S., Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications, Geochemical Journal, v. 39, no. 5, p. 469-480, 2005.
Zeng, Z.-G., Liu, C.-H., Chen, C.-T., Yin, X.-B., Chen, D.-G., Wang, X.-Y., Wang, X.-M., and Zhang, G.-L., Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan, Science in China Series D: Earth Sciences, v. 50, no. 11, p. 1746-1753, 2007.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明