博碩士論文 103222602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.218.38.125
姓名 詹偉森(James Wilson)  查詢紙本館藏   畢業系所 物理學系
論文名稱 銠奈米粒子鍍在白金(111)晶面為基板的石墨烯上的原子結構和反應途徑:利用反射式高能電子繞射儀和光電子能譜儀之研究
(Atomic Structures and Reactivity of Rhodium Nanoclusters Supported by Graphene Grown on Pt(111): A Combined RHEED and XPS Study)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉由反射式高能電子繞射儀,我們檢驗了銠奈米團簇的原子結構和晶格方向,而銠的奈米團簇是藉由物理蒸鍍的方法長在以白金(111)面作為基板的石墨烯上。觀察對於方位角的強度分布,銠的奈米團簇和石墨烯有不同的晶格方向。銠的奈米團簇主要有一對的峰值,意味銠的奈米團簇有一個主要的晶格方向;這不同於石墨烯擁有兩個晶格方向。銠的奈米團簇是以面心立方成長的,而其(111)面平行於石墨烯面,呈現同於白金(111)面的晶格方向。隨著覆蓋率和溫度的變化,銠的奈米團簇的晶格常數是穩定的。為了要探測銠奈米粒子的反應力,我們用光電子能譜儀去監測一氧化碳的吸附位置、分解的反應機制、和原子碳與原子氧的形成。我們在250K吸附一氧化碳在1ML的銠奈米團簇上,然後得到了兩個氧的1s軌域的峰值在533.3和532.35eV;這隱含了一氧化碳吸附在兩個不同的吸附位置── top site和bridge site。當我們加熱到350K和450K,分子氧的訊號強度下降,原子氧的產生在531.2eV,這是一氧化碳分解的效應。再加熱到550K,所有的一氧化碳分子從銠奈米團簇表面脫附。類似的效應在2ML
摘要(英) By means of reflection high energy electron diffraction (RHEED), we examined the atomic structures and orientation of the Rh nanoclusters grown by vapor deposition on graphene/Pt(111). Rh nanoclusters and graphene were grown with varied orientations observed by intensity distribution as a function azimuthal angle. The Rh nanoclusters have one couple of peak dominant, indicate that the Rh nanoclusters grow with one main orientation, differently from graphene, which was found to grow with two main orientations. Rh nanoclusters are grown as FCC phase with their (111) facets parallel to the graphene surface and exhibit an orientation same as that of Pt(111). The lattice constant of Rh nanoclusters found to be stable as a function of coverage and temperature. In order to probe the reactivity of Rh nanostructures, we used XPS to monitor the CO adsorption sites, the process of dissociation, and the formation of atomic C and O. We adsorbed CO at 250 K on 1 ML Rh nanoclusters, and got two peaks of O 1s signal around 533.3 and 532.35 eV. Implying CO adsorbed at two adsorption sites which are top and bridge site. When we annealed to 350 K and 450 K, the intensity of molecular O 1s signal decreased and the production of atomic oxygen appear around 531.2 eV as the effect of CO dissociation. Further annealing to high temperature 550 K all molecular CO desorbed from the surface of Rh nanoclusters. The similar result also found on 2 ML Rh nanoclusters.
關鍵字(中) ★ 原子結構
★ 石墨烯
★ 銠納米簇
★ 鉑(111)單晶
★ XPS
★ RHEED
關鍵字(英) ★ Atomic Structure
★ Graphene
★ Rhodium nanoclusters
★ Platinum (111) Single Crystal
★ XPS
★ RHEED
論文目次 Contents
Chapter 1 Introduction ..................................................1
Reference .......................................................3
Chapter 2 Literature Survey .............................................4
2.1 Graphene growth on Pt(111) and other substrates .............4
2.1.1 Graphene/Platinum(111) ............................4
2.1.2 Graphene/Iridium(111) .............................7
2.2 Pt and Rh Nanocluster on Graphene Moiré Pattern on Cu(111) .........10
2.3 Carbon Monoxide Dissociation .......................................14
2.3.1 Carbon Monooxide Dissociation on Rh Nanopyramids .14
2.3.2 Carbon Monooxide Dissociation Characteristic
on Size-Distributed Rhodium Islands on Alumina
Model Substrates .................................17
Reference ......................................................20
Chapter 3 Experimental Apparatus and Procedures ........................22
3.1 Apparatus and Ultrahigh Vacuum (UHV) System ................22
3.1.1 Introduction to Vacuum ...........................23
3.1.2 Reflection High Energy Electron Diffraction
(RHEED) ..........................................25
3.1.3 XPS Analysis System ..............................29
3.1.4 X-ray Photoelectron Spectroscopy (XPS) ...........30
3.2 Experimental Procedures ....................................36
3.2.1 Sample Cleaning ..................................36
3.2.2 Graphene Growth ..................................38
3.2.3 Deposition Procedures ............................38
3.2.4 Expose CO ........................................39
Reference ......................................................40
Chapter 4 Results and Discussions ......................................41
4.1 The structure of Rh clusters on Graphene/Pt(111) ...........41
4.1.1 Pt(111) surface ..................................41
4.1.2 The Structure of Graphene on Pt(111) .............43
4.1.3 The Structure of Rh nanoclusters on
Graphene/Pt(111) .................................46
4.1.4 The Coverage Effect of Rh nanoclusters on
Graphene/Pt(111) .................................51
4.1.5 The Annealing Effect of Rh nanoclusters on
Graphene/Pt(111) .................................52
4.2 XPS Study For the Reactivity of CO Dissociation on Rhodium
Nanoclusters on Graphene/Pt(111) ...............................54
Reference ......................................................61
Chapter 5 Conclusion ...................................................62
參考文獻 Reference Chapter 1:
[1] A. P. Alivisatos, Science. 271, 933 (1996)
[2] R. E. Palmer, New Sci. 2070, 38 (1996)
[3] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998)
[4] C. R. Henry, Sruf. Sci. Rep. 31, 231 (1998)
[5] M. Haruta, Catal. Today 36, 153 (1997)
[6] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998)
[7] Y. Zhang, G. Jacobs, D. E. Sparks, M. E. Dry, and B. H. Davis, Catal Today 71, 411
(2002).
[8] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).

Reference Chapter 2:
[1] A. B. Preobrajenski, May Ling Ng, A. S. Vinogradov, and N. Martensson, Physics Review B 78, 073401 (2008).
[2 ] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
[3] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys. 10, 043033 (2008).
[4] D. Franz, S. Runte, C. Busse, S. Schumacher, T. Gerber, T. Michely, M. Mantilla, V. Kilic, J. Zegenhagen, and A. Stierle, Phys. Rev. Lett. 2013, 110, 065503
[5] R. van Gastel, A. T. N’Diaye, D. Wall, J. Coraux, C. Busse, N. M. Buckanie, F.-J. Meyer zu Heringdorf, M. Horn von Hoegen, T. Michely, and B. Poelsema, Appl. Phys. Lett. 95, 121901 (2009).
[6] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006).
[7] U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering (Springer, Berlin, 2004).
[8] Esin Soy, Zhu Liang, and Michael Trenary, J. Phys. Chem. C, 119 (44), (2015).
[9] Lucci, F. R.; Lawton, T. J.; Pronschinske, A.; Sykes, E. C. H. Atomic Scale Surface Structure of Pt/Cu (111) Surface Alloys. J. Phys. Chem. C 2014, 118, 3015−3022.
[10] Evans, J.; Thiel, P.; Bartelt, M. C. Morphological Evolution During Epitaxial Thin Film Growth: Formation of 2D Islands and 3D Mounds. Surf. Sci. Rep. 2006, 61, 1−128.
[11] Freire, R. L. H.; Kiejna, A.; Da Silva, J. L. F. Adsorption of Rh, Pd, Ir, and Pt on the Au(111) and Cu(111) Surfaces: A Density Functional Theory Investigation. J. Phys. Chem. C 2014, 118, 19051−19061.
[12] Graham, G.; Schmitz, P.; Thiel, P. A. Growth of Rh, Pd, and Pt Films on Cu(100). Phys. Rev. B 1990, 41, 3353−3359.
[13] N’Diaye, A. T.; Gerber, T.; Busse, C.; Mysliveček, J.; Coraux, J.; Michely, T. A Versatile Fabrication Method for Cluster Superlattices. New J. Phys. 2009, 11, 103045.
[14] Zhou, Z.; Gao, F.; Goodman, D. W. Deposition of Metal Clusters on Single-Layer Graphene/Ru(0001): Factors That Govern Cluster Growth. Surf. Sci. 2010, 604, L31−L38.
[15] Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S.; et al. Local Electronic Structure and Density of Edge and Facet Atoms at Rh Nanoclusters Self-Assembled on a Graphene Template. ACS Nano 2012, 6, 3034−3043.
[16] Simoes, J. M.; Beauchamp, J. Transition Metal-Hydrogen and Metal-Carbon Bond Strengths: The Keys to Catalysis. Chem. Rev. 1990, 90, 629−688.
[17] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).
[18] A. Baraldi et al., J. Electron Spectrosc. Relat. Phenom. 76, 145 (1995).
[19] A. Baraldi et al., Surf. Sci. Rep. 49, 169 (2003).
[20] A. Baraldi et al., Surf. Sci. 367, L67 (1996).
[21] N. Martensson and A. Nilsson, in Springer Series in Surface Science, edited by W. Eberhardt (Springer-Verlag, Berlin, 1994), Vol. 35.
[22] This is due to changes of intermolecular interactions between CO molecules in on-top sites or partial occupation of threefold sites on the (111) facets of the RP.
[23] S. Andersson et al., J. Chem. Phys. 108, 2967 (1998).
[24] S. Doniach and M. Sunjic, J. Phys. C 3, 285 (1970).
[25] S. Andersson, M. Frank, A. Sandel, A. Giertz, B. Brena, P. A. Bru¨ hwiler, and N. Ma°rtensson, and J. Libuda, M. Bau¨mer, and H.-J. Freund, J. Chem. Phys., Vol. 108, No. 7, (1998).
[26] M. Frank, S. Andersson, J. Libuda, S. Stempel, A. Sandell, B. Brena, A. Giertz, P. A. Bru¨hwiler, M. Ba¨umer, N. Ma°rtensson, and H.-J. Freund, Chem. Phys. Lett. 279, 92 (1997).
[27] A. Beutler, E. Lundgren, R. Nyholm, J. Andersen, B. Setlik, and D. Heskett,
Surf. Sci. 371, 381 (1997).
[28] J. Libuda, Ph.D. thesis, Ruhr-Universita¨t Bochum, 1996.
[29] M. Rebholz, R. Prins, and N. Kruse, Surf. Sci. Lett. 259, L797 (1991).
[30] Y. Kim, H. C. Peebles, and J. M. White, Surf. Sci. 114, 363 (1982).
[31] J. T. Yates, Jr., E. D. Williams, and W. H. Weinberg, Surf. Sci. 91, 562 (1980).
[32] M. Ba¨umer, M. Frank, S. Stempel, J. Libuda, and H.-J. Freund, Surf. Sci. 391, 204 (1997).

Reference Chapter 3:
[1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
[2] Elaine M. McCash, Surface Chemistry.
[3] John B. Hudson, Surface Science: An Introduction.
[4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[7] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.
[8] A.K. Stantra and D.W. Goodman, J. Phys: Condens. Matter 14(2002) R31-R62.
[9] D.j. O’Connor, B.A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials
Science, Springer-Verlag, 1992.
[10] John F. Watts, John Wolstenholme, An introduction of surface analysis by XPS.
[11] Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164(2002).

Reference Chapter 4:
[1] Sam Zhang, Nanostructured Thin Films and Coatings: Mechanical Properties, CRC Press (2010), p358.
[2] Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni, Graphene Science Handbook: Size-Dependent Properties, CRC Press (2016), p105 ~ p106.
[3] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
[4] Cai, Pei Yang. 2016. Methanol Decomposition on Pt Nanoclusters Supported by Graphene on Pt(111): A Combined RHEED, IRAS and TPD Study. Zhongli,Taiwan, National Central University pp52, 55. Master Thesis.
[5] Moulder, John F., Stickle, William F., Sobol, Peter E., Bomben, Kenneth D., 1992. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronic, Inc: 6509 Flying Cloud Drive Eden Praire, Minnesota 55344 United State of America.
[6] A. B. Preobrajenski, May Ling Ng, A. S. Vinogradov, and N. Mårtensson, Controlling Graphene Corrugation on Lattice-Mismatched Substrates, Phys. Rev. B. 78, 073401 (2008).
[7] F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. 97, 056103, (2006).
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明