博碩士論文 104328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.142.98.191
姓名 張媛婷(Yuan-Ting Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究
(The investigation of transferring graphene film for high performance transparent conductive film by roll-to-roll dry transfer method)
相關論文
★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究
★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能
★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯(Graphene),具有優異的導電性、機械強度、光穿透率( > 97%)和化學穩定性,在軟性電子與光電元件深具應用潛力。化學氣相沉積法(Chemical Vapor Deposition, CVD)於過渡金屬基材上成長石墨烯薄膜為目前的主流方法,具有大面積薄膜、高結晶性及高均勻性的優點。然而,大面積轉印石墨烯薄膜仍是目前進入工業上實際應用的瓶頸。
本研究將利用CVD法,成長大面積、多層的高品質石墨烯薄膜,並研究可靠之轉印技術,將石墨烯薄膜直接轉印至高透光之軟性基板上。達到高值性軟性基板的開發,未來可應用於高透光、高化學穩定性、耐高溫、可彎曲之導電膜、導熱與感測元件等。
本研究之具體成果: (1) 發展石墨烯多層膜(MLG)的直接合成技術,優化條件達到2-3層均勻的石墨烯薄膜,高結晶性(ID/IG ≈ 0.12)及導電膜光電特性(Rs: 800 ohm/sq,at 550 nm T: 94%); (2) 發展捲對捲機械撕離技術(R2RME)於製作石墨烯薄膜於各種軟性基板條件的系統性研究, R2RME優化之條件測試(張力、分離角度等),搭配後期所開發的電化學插層與剝離技術(EC-DME),可進一步提升轉印良率、均勻性和降低片電阻值。(3)研究石墨烯轉印於軟性基板後的各種改質方法,系統性的探討其對於降低片電阻的影響,使用化學改質方法修飾石墨烯,結果顯示(i)單層石墨烯可達到光穿94%,片電阻57 ohm/sq; (ii) 利用EC-R2RME乾式轉印法結合化學改質可將片電阻降低至~290 ohm/sq,光穿~85%(含基板)。
總結此研究的效益,本研究利用各種所開發之接著劑,能夠直接將石墨烯薄膜由銅箔上直接剝離下來,並能維持其導電膜的性能,此研究獲得一個突破性且具有量產性的乾式轉印技術,能大幅降低成本與環保製程的目標。
摘要(英) Graphene, which has exceptional electrical, mechanical, transparency and chemical stability properties, has potential to be applied to flexible electronic and optoelectronic device. Using Chemical Vapor Deposition (CVD) to synthesize graphene film on transition metals is the main method for producing large area, highly crystalline, and uniform graphene film. However, transferring large area graphene films is still a critical issue for graphene applying in industrial-scale production.
In this research, we use CVD to synthesize large area and high-performance multilayer graphene films. Furthermore, we invest the dry transfer method to transfer graphene films on a flexible substrate in order to develop high-performance flexible substrate which can be applied to high transparency, high chemical stability, temperature resistant and flexible electrical conductive film.
Results of this research are as follows. (1) Directly synthesize 2~3 uniform multilayer graphene that is highly crystalline (ID/IG ≈ 0.12) and high optoelectronic performance (Rs: 800 ohm/sq, at 550 nm T: 94%). (2) Using Roll to Roll Mechanical Exfoliation method (R2RME) to transfer graphene films onto different flexible substrates. Combining the optimized conditions (tension and tear angle, etc.) of R2RME and Electrochemical can increase the yield, uniformity, and conductivity of graphene films. (3) Doping graphene films that have been transferred onto flexible substrates. We use different kinds of chemical doping methods to modify graphene films and discuss how they make influences on sheet resistance. Following are the results of this work. (i) The sheet resistance and transmittance of the single layer graphene film can reach 57 ohm/sq and 94%, respectively. (ii) Combining EC-DME dry transfer method with chemical doping can make the sheet resistance decrease to ~290 ohm/sq , transmittance ~85% (including the substrate)
In summary, with different kinds of binder developed in this research, we can directly exfoliate graphene films from Cu foil and retain the properties of the conductive film. This is an industrial-scale production dry transfer method, which can lower the cost of production and is eco-friendly.
關鍵字(中) ★ 石墨烯
★ 轉印
★ 透明導電膜
關鍵字(英) ★ granphene
★ transfer
★ transparent conductive film
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機 10
第二章 研究方法 12
2-1 研究方法 12
2-2 實驗流程 12
2-2-1 多層石墨烯薄膜之成長 13
2-2-2 乾式轉印方法研究 15
2-2-3 石墨烯改質 21
2-3 材料分析與鑑定 22
2-3-1 拉曼光譜儀 (Raman Spectroscopy) 22
2-3-2 紫外光-可見光光譜儀 (UV-Vis Spectrometers) 23
2-3-3 四點探針量測儀(Four Point Probe) 23
2-3-4 霍爾量測(Hall measurement) 23
2-3-5 掃描電子顯微鏡(SEM) 23
第三章 結果與討論 24
3-1 多層石墨烯薄膜的直接成長 24
3-1-1 甲烷流量與成長時間之調控 24
3-1-2 甲烷與氫氣流量調控 26
3-1-3 氬氣流量調控 28
3-2 乾式轉印 29
3-2-1 直接撕離(DME)與捲對捲機械撕離(R2RME)之石墨烯/軟性基板 29
3-2-2 接著劑比例對於R2RME轉印石墨烯的研究 33
3-2-3 結合電化學插層與機械撕離之石墨烯/軟性基板 34
3-3 石墨烯改質 41
3-3-1 化學摻雜於濕式轉印石墨烯 42
3-3-2 乾式轉印結合優化之化學摻雜方法 50
3-4 圖案化石墨烯薄膜於軟性基板 53
第四章 結論與未來工作 54
4-1 結論 54
4-2 未來工作 55
參考文獻 56
附錄 60
參考文獻 1. Li, X., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
2. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
3. Reina, A., et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
4. Hong, J.Y., et al., A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Adv Mater, 2016. 28(12): p. 2382-92.
5. Zhang, Z., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
6. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
7. Jang, B., et al., Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017. 4(2): p. 024002.
8. Kang, J., et al., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano, 2012. 6(6): p. 5360-5365.
9. Kang, J., et al., High-performance graphene-based transparent flexible heaters. Nano Lett, 2011. 11(12): p. 5154-8.
10. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
11. Lee, Y., et al., Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010. 10(2): p. 490-493.
12. Kim, S.J., et al., Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett, 2015. 15(5): p. 3236-40.
13. Yang, S.Y., et al., Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small, 2015. 11(2): p. 175-81.
14. Kim, J., et al., Layer-resolved graphene transfer via engineered strain layers. Science, 2013. 342(6160): p. 833-6.
15. Zaretski, A.V., et al., Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology, 2015. 26(4): p. 045301.
16. Unarunotai, S., et al., Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. Acs Nano, 2010. 4(10): p. 5591-5598.
17. Juang, Z.Y., et al., Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon, 2010. 48(11): p. 3169-3174.
18. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett, 2015. 15(6): p. 4206-13.
19. Lock, E.H., et al., High-quality uniform dry transfer of graphene to polymers. Nano Lett, 2012. 12(1): p. 102-7.
20. Fechine, G.J.M., et al., Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015. 83: p. 224-231.
21. Yoon, T., et al., Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett, 2012. 12(3): p. 1448-52.
22. Na, S.R., et al., Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano, 2015. 9(2): p. 1325-1335.
23. Chen, T.L., et al., Nanopatterned graphene on a polymer substrate by a direct peel-off technique. ACS Appl Mater Interfaces, 2015. 7(10): p. 5938-43.
24. Wang, X., et al., Direct delamination of graphene for high-performance plastic electronics. Small, 2014. 10(4): p. 694-8.
25. Marta, B., et al., Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science, 2016. 363: p. 613-618.
26. Cherian, C.T., et al., ′Bubble-free′ electrochemical delamination of CVD graphene films. Small, 2015. 11(2): p. 189-94.
27. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011. 5(12): p. 9927-9933.
28. Wang, R., et al., Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Appl Mater Interfaces, 2016. 8(48): p. 33072-33082.
29. Banszerus, L., et al., Dry transfer of CVD graphene using MoS2
-based stamps. physica status solidi (RRL) - Rapid Research Letters, 2017. 11(7): p. 1700136.
30. Gupta, P., et al., A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Sci Rep, 2014. 4: p. 3882.
31. Schmitz, M., et al., High mobility dry-transferred CVD bilayer graphene. Applied Physics Letters, 2017. 110(26): p. 263110.
32. Pizzocchero, F., et al., Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015. 85: p. 397-405.
33. Luo, D., et al., Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017. 29(10): p. 4546-4556.
34. Chandrashekar, B.N., et al., Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Adv Mater, 2015. 27(35): p. 5210-6.
35. Wang, M.C., et al., A sustainable approach to large area transfer of graphene and recycling of the copper substrate. J. Mater. Chem. C, 2017.
36. Kang, J., et al., Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p. 5527-5537.
37. Zaretski, A.V. and D.J. Lipomi, Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale, 2015. 7(22): p. 9963-9969.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2018-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明