參考文獻 |
1. Li, X., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
2. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
3. Reina, A., et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
4. Hong, J.Y., et al., A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Adv Mater, 2016. 28(12): p. 2382-92.
5. Zhang, Z., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
6. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
7. Jang, B., et al., Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017. 4(2): p. 024002.
8. Kang, J., et al., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano, 2012. 6(6): p. 5360-5365.
9. Kang, J., et al., High-performance graphene-based transparent flexible heaters. Nano Lett, 2011. 11(12): p. 5154-8.
10. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
11. Lee, Y., et al., Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010. 10(2): p. 490-493.
12. Kim, S.J., et al., Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett, 2015. 15(5): p. 3236-40.
13. Yang, S.Y., et al., Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small, 2015. 11(2): p. 175-81.
14. Kim, J., et al., Layer-resolved graphene transfer via engineered strain layers. Science, 2013. 342(6160): p. 833-6.
15. Zaretski, A.V., et al., Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology, 2015. 26(4): p. 045301.
16. Unarunotai, S., et al., Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. Acs Nano, 2010. 4(10): p. 5591-5598.
17. Juang, Z.Y., et al., Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon, 2010. 48(11): p. 3169-3174.
18. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett, 2015. 15(6): p. 4206-13.
19. Lock, E.H., et al., High-quality uniform dry transfer of graphene to polymers. Nano Lett, 2012. 12(1): p. 102-7.
20. Fechine, G.J.M., et al., Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015. 83: p. 224-231.
21. Yoon, T., et al., Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett, 2012. 12(3): p. 1448-52.
22. Na, S.R., et al., Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano, 2015. 9(2): p. 1325-1335.
23. Chen, T.L., et al., Nanopatterned graphene on a polymer substrate by a direct peel-off technique. ACS Appl Mater Interfaces, 2015. 7(10): p. 5938-43.
24. Wang, X., et al., Direct delamination of graphene for high-performance plastic electronics. Small, 2014. 10(4): p. 694-8.
25. Marta, B., et al., Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science, 2016. 363: p. 613-618.
26. Cherian, C.T., et al., ′Bubble-free′ electrochemical delamination of CVD graphene films. Small, 2015. 11(2): p. 189-94.
27. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011. 5(12): p. 9927-9933.
28. Wang, R., et al., Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Appl Mater Interfaces, 2016. 8(48): p. 33072-33082.
29. Banszerus, L., et al., Dry transfer of CVD graphene using MoS2
-based stamps. physica status solidi (RRL) - Rapid Research Letters, 2017. 11(7): p. 1700136.
30. Gupta, P., et al., A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Sci Rep, 2014. 4: p. 3882.
31. Schmitz, M., et al., High mobility dry-transferred CVD bilayer graphene. Applied Physics Letters, 2017. 110(26): p. 263110.
32. Pizzocchero, F., et al., Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015. 85: p. 397-405.
33. Luo, D., et al., Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017. 29(10): p. 4546-4556.
34. Chandrashekar, B.N., et al., Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Adv Mater, 2015. 27(35): p. 5210-6.
35. Wang, M.C., et al., A sustainable approach to large area transfer of graphene and recycling of the copper substrate. J. Mater. Chem. C, 2017.
36. Kang, J., et al., Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p. 5527-5537.
37. Zaretski, A.V. and D.J. Lipomi, Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale, 2015. 7(22): p. 9963-9969. |