博碩士論文 952202039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:166 、訪客IP:3.133.141.6
姓名 陳英杰(Ying-chien Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 新型氮化鎵蕭特基二極體之製作與特性分析
(Fabrication and analysis of a novel GaN Schottky Diodes)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 以化學製程製備奈米級二氧化鈦並研究其親水性及測試其除霧效果★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目標乃是利用AlGaN/GaN 異質結構製作高崩潰電壓與高順向電流之蕭特基二極體,為了改善傳統蕭特基二極體具有大約1 V 開啟電壓(Von)以及過大之漏電流問題,本論文提出一個新穎的整流二極體結構,即P 型氮化鎵-場效蕭特基二極體(P-FESBD),此乃結合雙閘極金屬之蕭特基二極體與pn 接面二極體的設計概念,結構之特點乃是在閘極區域嵌入歐姆金屬,以降低元件的開啟電壓,而p-n 空乏區的作用則是在不需要recessed製程的情況下便達到常關型(normally-off)的操作特性同時降低反向漏電流,此外,由於P 型氮化鎵閘極的表面為歐姆接觸,因此當元件操作於順向偏壓時,P 型氮化鎵閘極會提供電洞注入通道降低開啟後電阻(Ron),完成後之元件獲得0.5 V 的低開啟電壓,開啟後電阻與崩潰電壓(VB)則分別為24 mΩ-cm2 與22 V,經由SIMS 與緩衝層電流量測的分析後發現鎂 (Mg)的擴散以及緩衝層材料的阻值皆是影響P-FESBD 元件特性的關鍵因素。另一方面為了改善傳統大面積蕭特基二極體因材料缺陷導致良率偏低的問題,本研究利用打線(wire bonding)並聯的方式製作陣列式蕭特基二極體,1.5 V 時可得順向電流432 mA,同時崩潰電壓仍維持在160 V。
摘要(英) In this thesis a new AlGaN/GaN high electron mobility transistor basedrectifier, i.e. P-field effect Schottky barrier diode (P-FESBD), is proposed andfabricated. It consists of a p-n diode and a Schottky diode connected in parallel.With the additional p-type GaN gate, the rectifier is expected to operate in the normally-off mode with low reverse leakage current and low on-resistance. The
turn-on voltage, on-state resistance and breakdown voltage of the one finger rectifier with 500×35 μm2 gate area is 0.5 V, 24 mΩ-cm2 and 22 V, respectively. According to secondary ion mass spectroscopy measurement and electrical
characterization, diffusion of the p-type dopant, Mg, and leakage current of the GaN buffer layer are concluded to be the main reasons for poor breakdown voltage.
Furthermore, in order to increase the forward current and yield of GaN Schottky diodes with multi-finger or large gate area, tested Schottky diodes are connected in parallel by wire bonding. Forward current of 432 mA at 1.5 V is achieved on a six-diode device with 160 V breakdown voltage.
關鍵字(中) ★ 氮化鎵
★ 蕭特基二極體
關鍵字(英) ★ Schottky diode
★ GaN
論文目次 目 錄
中文摘要 ................................................ i
英文摘要 ............................................... ii
誌謝 ...................................................iii
目錄 ....................................................iv
圖目錄 ................................................. vi
表目錄 ................................................. ix
第一章 緒論 ............................................. 1
1.1 前言 ................................................ 1
1.2 氮化鎵蕭特基二極體之發展概況 ........................ 5
1.3 研究動機 ............................................12
第二章 P-GaN/AlGaN/GaN 蕭特基二極體的元件製作與特性分析 18
2.1 元件結構與製程步驟 ................................. 18
2.2 元件的電流-電壓特性與分析 .......................... 27
2.3 本章結論 ............................................38
第三章 雙重蕭特基金屬之整流二極體的元件製作與特性分析 ...39
3.1 前言 ................................................39
3.2 FESBD 與Recessed-gate FESBD 的元件結構及製程步驟 ... 40
3.3 FESBD 的元件特性與分析 ..............................43
3.4 Recessed-gate FESBD 的元件特性與分析 ................45
3.5 本章結論 ........................................... 49
第四章 高順向電流蕭特基二極體之元件分析 ................ 50
4.1 前言 ................................................50
4.2 陣列式AlGaN/GaN 蕭特基二極體的元件製作與特性分析 ... 52
4.3 元件串聯阻值分析 ....................................60
4.4 不同電極窗口設計之元件特性分析 ..................... 68
4.5 本章結論 ........................................... 71
第五章 結論 ............................................ 72
參考文獻 ................................................73
參考文獻 參考文獻
[1] Chow TP and Tyagi R., “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, Vol. 41, 1481-1483, 1998
[2] L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche, and J. Thuret,“Electrical Performance of GaN Schottky Rectifiers on Si Substrates”,Journal of The Electrochemical Society, 153 (7), G681-G684, 2006
[3] B. J. Baliga, Modern power device, Wiley, New York, 1987
[4] http://www.cree.com/products/power_chip_sales.asp
[5] http://www.veloxsemi.com/pdfs/Preliminary_Specs_VSD08060.pdf
[6] S. Elhamri, R. Berney, W. C. Mitchel, W. D. Mitchell, J. C. Roberts, P.Rajagopal, T. Gehrke, E. L. Piner, and K. J. Linthicum, “An electrical characterization of a two-dimensional electron gas in GaN/AlGaN on silicon substrates”, J. Appl. Phys., Vol. 95, No. 11, 7982~7989, 2005
[7] http://compoundsemiconductor.net/cws/article/news/34464
[8] Yi Zhou, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams, Minseo Park, N. Mark Williams, Andrew Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate”, Solid-State Electronics, Vol. 50, 1744-1747, 2006
[9] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A.V. Govorkov, J. M. Redwing, X. A. Cao and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol.76, 1767, 2000
[10] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A.V. Govorkov, J. M. Redwing, H. Cho and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol. 76, 3816, 2000
[11] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B.Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee and S. J. Pearton,“Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage”, Appl. Phys. Lett., Vol. 78, 823, 2001
[12] Z. Z. Bandic´, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V.M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers”, Appl. Phys. Lett., Vol.74, 1266, 1999
[13] J. W. Johnson, A. P. Zhang, Wen-Ben Luo, Fan Ren, Stephen J. Pearton, S. S. Park, Y. J. Park, and Jen-Inn Chyi, “Breakdown Voltage and Reverse Recovery Characteristics of Free-Standing GaN Schottky Rectifiers”, IEEE Transactions on Electron Devices, Vol. 49, No. 1, 2002
[14] S. Yoshida, J. Li, N. Ikeda, and K. Hataya, “AlGaN/GaN field effect Schottky barrier diode (FESBD)”, phys. stat. sol. (c) 2, No. 7, 2602, 2005
[15] K. Takatani, T. Nozawa, T. Oka, H. Kawamura and K. Sakuno,“AlGaN/GaN Schottky-ohmic combined anode field effect diode with fluoride-based plasma treatment”, IEEE ELECTRONICS LETTERS, Vol.44, No. 4, 2008
[16] A. P. Zhang, J. W. Johnson, B. Luo, and F. Ren, S. J. Pearton, S. S. Park and Y. J. Park, J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates”, Appl. Phys. Lett., Vol. 79, 1555, 2001
[17] K. H. Baik, Y. Irokawa, Jihyun Kim, J. R. LaRoche, F. Ren, S. S. Park, Y.J. Park, and S. J. Pearton, “160-A bulk GaN Schottky diode array”, Appl.Phys. Lett., Vol. 83, 3192, 2003
[18] Dallas T. Morisette, James A. Cooper, Jr., Michael R. Melloch, Gary M.Dolny, Praveen M. Shenoy, M. Zafrani, and Jon Gladish, “Static and Dynamic Characterization of Large Area High Current Density SiC Schottky Diodes”, IEEE Trans. Electron Devices, Vol. 48, No. 2, 349-352,
2001
[19] Akira Itoh, Tsunenobu Kimoto and Hiroyuki Matsunami, “Excellent Reverse Blocking Characteristics of High-Voltage 4H-SiC Schottky Rectifiers with Boron-Implanted Edge Termination”, IEEE ELECTRONICS LETTERS, Vol. 17, No. 3, 1996
[20] Vik Saxena, Jian Nong (Jim) Su, and Andrew J. Steckl, “High-Voltage Ni– and Pt–SiC Schottky Diodes Utilizing Metal Field Plate Termination”, IEEE Trans. Electron Devices, Vol. 46, No. 3, 456-464, 1999
[21] Marc C. Tarplee, Vipin P. Madangarli, Quinchun Zhang and Tangali S. Sudarshan, “Design Rules for Field Plate Edge Termination in SiC Schottky Diodes”, IEEE Trans. Electron Devices, Vol. 48, No. 12, 2659-2664, 2001
[22] Nina V. Dyakonova, Pavel A. Ivanov, Vladimir A. Kozlov, M. E. Levinshtein, John W. Palmour, S. L. Rumyantsev, and Ranbir Singh, “Steady-State and Transient Forward Current–Voltage Characteristics of 4H-Silicon Carbide 5.5 kV Diodes at High and Superhigh Current
Densities”, IEEE Trans. Electron Devices, Vol. 46, No. 11, 2188-2194, 1999
[23] Nariaki Ikeda, Kazuo Kato, Kazuo Kondoh, Hiroshi Kambayashi, Jiang Li, and Seikoh Yoshida, “Over 55 A, 800 V high power AlGaN/GaN HFETs for power switching application”, phys. stat. sol. (a) 204, No. 6, 2028–2031, 2007
[24] Wataru Saito, Yoshiharu Takada, Masahiko Kuraguchi, Kunio Tsuda, andIchiro Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications”,IEEE Trans. Electron Devices, Vol. 53, No. 2, 2006
[25] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs With Thin InGaN Cap Layer for Normally Off Operation”, IEEE ELECTRONICS LETTERS, Vol. 28, No. 7, 2007
[26] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska and M.S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate”, IEEE ELECTRONICS LETTERS, Vol. 36, No. 8, 2000
[27] Yong Cai, Yugang Zhou, Kei May Lau and Kevin J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode”, IEEE Trans. Electron Devices, Vol. 53, No. 9, 2006
[28] Yifei Zhang, I. P. Smorchkova, C. R. Elsass, Stacia Keller, James P. Ibbetson, Steven Denbaars, Umesh K. Mishra and Jasprit Singh, “Charge control and mobility in AlGaN/GaN transistors: Experimental and theoretical studies”, J. Appl. Phys., Vol. 87, No. 11, 2000
[29] Yasuhiro Uemoto, Masahiro Hikita, Hiroaki Ueno, Hisayoshi Matsuo, Hidetoshi Ishida, Manabu Yanagihara, Tetsuzo Ueda, Tsuyoshi Tanaka, and Daisuke Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation”, IEEE
Trans. Electron Devices, Vol. 54, No. 12, 3393-3399, 2006
[30] Shang-bui L. Tu., Chandler, Ariz., Bantval J. Baliga, Raleigh, N.C., “Schottky barrier rectifier including Schottky barrier regions of differing barrier heights”, U.S. Patent, 5262668, 1993
[31] A. Kamada, K. Matsubayashi and A. Nakagawa, Y. Terada and T. Egawa,“High-Voltage AlGaN/GaN Schottky Barrier Diodes on Si Substrate with Low-Temperature GaN Cap Layer for Edge Termination”, Proceedings of 20th International Symposium on Power Semiconductor Devices & ICs, Orlando, p225-p228, 2008
[32] Ji-Myon Lee, Ki-Myung Chang, In-Hwan Lee, and Seong-Ju Park, “Highly selective dry etching of III nitrides using an inductively coupled Cl2/O2/Ar plasma”, J. Vac. Sci. Technol., B 18(3), 1409, 2000
[33] Lutz Kirste, Klaus KÖhler, Manfred Maier, Michael Kunzer, Markus Maier, Joachim Wagner, “SIMS depth profiling of Mg back-diffusion in (AlGaIn)N light-emitting diodes”, J Mater Sci: Mater Electron, Vol. 19, S176-S181, 2008
[34] Hideki Hasegawa, Takanori Inagaki, Shinya Ootomo, and Tamotsu Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN”, J. Vac. Sci. Technol., B 21(4), 1844, 2003
[35] B. S. Kang, F. Ren, Y.Irokawa K. W. Baik, S. J. Peartona, C.-C. Pan, G.-T. Chen, J.-I. Chyi, H.-J. Ko and H.-Y. Lee, “Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates”, J. Vac. Sci. Technol. B 22, 710, 2004
[36] Dieter K. Schroder, Semiconductor Material and Device Characterization, Second edition, pp. 138
[37] W. Liu, Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor, pp. 717
[38] A. N. Bright, P. J. Thomas, M. Weyland, D. M. Tricker, C. J. Humphreys, and R. Davies, “Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy”, J. Appl. Phys., Vol. 89, No. 6, 3143~3150, 2001
指導教授 綦振瀛、粘正勳
(Jen-inn Chyi、Cheng-Hsun Nien)
審核日期 2009-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明