參考文獻 |
[1] Andrej Karpathy, “Cs231n, convolutional neural networks for visual recognition.” [Online]. Available: http://cs231n.github.io/assets/nn1/neural net2.jpeg
[2] LISA lab, “Convolutional neural networks (lenet).” [Online]. Available: http: //deeplearning.net/tutorial/ images/mylenet.png
[3] Denny Britz , “Recurrent neural networks tutorial, part 1 – introduction to rnns.” [Online]. Available: http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/ 2015/09/rnn.jpg
[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cambridge, 1998, vol. 1, no. 1.
[5] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, and D. Silver, “Massively Parallel Methods for Deep Reinforcement Learning,” arXiv, p. 14, 2015. [Online]. Available: http://arxiv.org/abs/1507.04296
[6] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency oriented traf- fic offloading in wireless networks: A brief survey and a learning approach for het- erogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp. 627–640, 2015.
[7] P. Sankt, “Lte networks: How far are the achievable capacities from the theoretical ones?” ICUMT2012, 2012.
[8] MARK HEATH, “Lte performance is good, but it’s not that good!” 2010. [Online]. Available: https://http://www.unwiredinsight.com/2010/lte-performance
[9] C. V. N. I. Cisco, “Global mobile data traffic forecast update, 2016–2021,” white paper, 2016.
[10] A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: technical and business perspectives,” IEEE Wireless Communications, vol. 20, no. 2, pp. 104– 112, 2013.
[11] D. Lo ́pez-Pe ́rez, M. Ding, H. Claussen, and A. H. Jafari, “Towards 1 gbps/ue in cel- lular systems: Understanding ultra-dense small cell deployments,” IEEE Communi- cations Surveys & Tutorials, vol. 17, no. 4, pp. 2078–2101, 2015.
[12] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5g ultra-dense cellular networks,” IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79, 2016.
[13] J. Xu, J. Wang, Y. Zhu, Y. Yang, X. Zheng, S. Wang, L. Liu, K. Horneman, and Y. Teng, “Cooperative distributed optimization for the hyper-dense small cell deploy- ment,” IEEE Communications Magazine, vol. 52, no. 5, pp. 61–67, 2014.
[14] A. Imran and A. Zoha, “Challenges in 5G: how to empower SON with big data for enabling 5G,” IEEE Network, vol. 28, no. 6, pp. 27–33, Nov. 2014.
[15] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling internet traffic dynamics of cellular devices,” ACM SIGMETRICS Performance Evaluation Review, vol. 39, no. 1, p. 265, 2011.
[16] Y.Lv,Y.Duan,W.Kang,Z.Li,andF.-Y.Wang,“Trafficflowpredictionwithbigdata: a deep learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.
[17] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic prediction: a comparison between traditional and deep learning neural networks,” International Journal of Big Data Intelligence, vol. 3, no. 1, pp. 28–37, 2016.
[18] “Multi-scale Internet traffic forecasting using neural networks and time series meth- ods,” Expert Systems, vol. 29, no. 2, pp. 143–155, 2012.
[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.
[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level con- trol through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[21] M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Multiple daily base station switch-offs in cellular networks,” in Communications and Electronics (ICCE), 2012 Fourth International Conference on. IEEE, 2012, pp. 245–250.
[22] C. Liu, B. Natarajan, and H. Xia, “Small cell base station sleep strategies for energy efficiency,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1652– 1661, 2016.
[23] Y. S. Soh, T. Q. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 5, pp. 840–850, 2013.
[24] V. A. Siris and M. Anagnostopoulou, “Performance and energy efficiency of mo- bile data offloading with mobility prediction and prefetching,” in World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th International Sym- posium and Workshops on a. IEEE, 2013, pp. 1–6.
[25] F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, and Y. Li, “Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach,” IEEE Transactions on Services Computing, vol. 9, no. 5, pp. 796–805, Sep. 2016.
[26] X. Zhou, Z. Zhao, R. Li, Y. Zhou, and H. Zhang, “The predictability of cellular net- works traffic,” 2012 International Symposium on Communications and Information Technologies, ISCIT 2012, pp. 973–978, 2012.
[27] R. Li, Z. Zhao, J. Zheng, Y. Chen, C. Mei, Y. Cai, and H. Zhang, “The Learning and Prediction of Application-level Traffic Data in Cellular Networks,” pp. 1–12, 2016. [Online]. Available: http://arxiv.org/abs/1606.04778
[28] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic flow predic- tion: Deep belief networks with multitask learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2191–2201, 2014.
[29] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic prediction: a comparison between traditional and deep learning neural networks,” International Journal of Big Data Intelligence, vol. 3, no. 1, p. 28, 2016. [Online]. Available: http://www.inderscience.com/link.php?id=73903
[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.
[31] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in Advances in neural information processing systems, 1990, pp. 396–404.
[32] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279– 292, 1992.
[33] L.-J. Lin, “Reinforcement learning for robots using neural networks,” Carnegie- Mellon Univ Pittsburgh PA School of Computer Science, Tech. Rep., 1993.
[34] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning.” in AAAI, 2016, pp. 2094–2100.
[35] E. Bjo ̈rnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Designing multi-user mimo for energy efficiency: When is massive mimo the answer?” in Wireless Communica- tions and Networking Conference (WCNC), 2014 IEEE. IEEE, 2014, pp. 242–247.
[36] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source dataset of urban life in the city of Milan and the Province of Trentino.” Scientific data, vol. 2, p. 150055, 2015.
[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Advances in neural information processing systems, 2014, pp. 3104– 3112.
[39] A.GravesandN.Jaitly,“Towardsend-to-endspeechrecognitionwithrecurrentneural networks,” in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 1764–1772.
[40] D.Tran,L.Bourdev,R.Fergus,L.Torresani,andM.Paluri,“Learningspatiotemporal features with 3d convolutional networks,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 4489–4497.
[41] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.
[42] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual recognition and description,” in The IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR), 2015.
[43] K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, “Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 644–654, Jun. 2012. |