博碩士論文 104522040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.139.107.131
姓名 張瑞慶(Jui-Ching Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一個可重組二值影像處理器及其開發平台設計
(Design of A Reconfigurable Binary Image Processor and Its Development Platform)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二值影像處理被運用在多種靜態及串流影像當中,如物件辨識、追蹤、除雜訊,為了適應各種領域不同應用,以及即時影像處理的需求,本研究提出一可重組二值影像處理器以及開發平台,具有高度靈活性與即時影像處理之優點,能夠透過程式控制改變影像處理流程,處理器使用pipeline架構設計,提供形態學與邏輯運算元以及連通元件標記演算法,可重組的特點包含影像大小、二值化門檻值、結構元素及二值影像處理流程。本研究透過合成於Stratix V FPGA平台來驗證硬體效能,其中有16顆運算核心,處理器頻率可達379.94MHz,一秒鐘能夠處理362張大小為"1024×1024" 的影像,並整合基因演算法及簡易開發平台,讓應用系統可以快速的開發,實驗結果證明本系統達到即時二值影像處理,能因應未來各領域之需求。
摘要(英) Binary image processing has considerable applications in image and video processing such as object recognition, tracking, and denoising. To enable real-time image processing for various applications, we propose a reconfigurable binary image processor with a flexible development platform and real-time processing capabilities. The developed processor enables the modification of image processing procedures by reprogramming the employed hardware registers. The processor involves a pipeline architecture design which can perform morphological and binary operations and connected-component labeling. The reconfigurable features of the processor include the image size, image thresholding, structure element, and binary image processing procedure. For performance validation, the processor was implemented on a Stratix V field-programmable gate array, which can process approximately 362 frames per second and can conduct 16 operations with a 1024 × 1024 image at 379.94 MHz. Moreover, proposed platform with a genetic algorithm can be utilized for rapidly and conveniently developing the application system. The experimental results demonstrated that the processor is suitable for use in real-time applications of binary image processing.
關鍵字(中) ★ 可重組
★ 二值影像處理器
★ 數學形態學
★ 基因演算法
★ Real time
關鍵字(英) ★ Reconfigurable
★ Binary image processor
★ Mathematical morphology
★ Genetic algorithm
★ Real time
論文目次 摘 要 I
Abstract II
謝誌 III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章、 文獻回顧 5
2.1 數學形態學與二值邏輯運算元 5
2.1.1 侵蝕 8
2.1.2 膨脹 9
2.1.3 Hit and miss transform 11
2.1.4 二值邏輯運算元 13
2.2 連通元件標記 16
2.3 結構元素分解 23
2.4 可重組二值影像處理器 25
第三章、 可重組二值影像處理器架構 27
3.1 可重組二值影像處理器架構 27
3.2 指令輸入控制器 28
3.3 影像前處理模組 29
3.4 形態學與邏輯運算控制器 30
3.5 可重組形態學及二值影像處理核心 31
3.6 可重組二值影像開發控制器 36
3.7 軟硬體整合介面 36
第四章、 系統實作 38
4.1 MIAT系統設計方法論 38
4.1.1 IDEF0 40
4.1.2 GRAFCET 42
4.2 系統架構IDEF0 45
4.2.1 應用控制器 46
4.2.2 二值影像控制器 47
4.2.3 資料介面 48
4.2.4 影像傳輸模組 49
4.2.5 影像前處理器 50
4.2.6 SPI接收控制器 51
4.2.7 SPI傳輸控制器 51
4.2.8 形態學核心 52
4.2.9 連通元件標記模組 53
4.3 GRAFCET離散事件建模 54
4.3.1 應用控制器 55
4.3.2 二值影像處理器 57
4.3.3 介面模組 58
4.3.4 影像傳輸模組 59
4.3.5 SPI接收控制器與傳輸控制器 61
4.3.6 影像前處理器 63
4.3.7 連通元件標記模組 64
4.3.8 形態學核心 66
4.4 系統合成 69
4.4.1 軟體合成 69
4.4.2 硬體合成 69
第五章、 軟硬體整合驗證 79
5.1 實驗平台 79
5.1.1 FPGA開發平台 79
5.1.2 MCU開發平台 80
5.1.3 影像感測器 80
5.2 音符辨識應用 82
5.3 二值影像處理器硬體驗證 85
5.4 應用開發軟體 90
5.5 相關研究比較 92
5.6 應用開發實驗 95
第六章、 結論與未來展望 101
6.1 結論 101
6.2 未來展望 103
參考文獻 104
附錄 110

參考文獻 [1] E. C. Pedrino, O. Morandin, E. R. R. Kato, and V. O. Roda, "Intelligent FPGA based system for shape recognition," in 2011 VII Southern Conference on Programmable Logic (SPL), Cordoba, Argentina, 2011, pp. 197-202.
[2] M. F. Talu, "A novel object recognition method based on improved edge tracing for binary images," in 2009 International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 2009, pp. 1-5.
[3] D. J. Dailey, F. W. Cathey, and S. Pumrin, "An algorithm to estimate mean traffic speed using uncalibrated cameras," IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 2, pp. 98-107, Jul. 2000.
[4] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat, "A survey on industrial vision systems, applications and tools," Image and Vision Computing, vol. 21, no. 2, pp. 171-188, Feb. 2003.
[5] H. Mu, Y. Zhang, H. Li, Y. Guo, and Y. Zhuang, "Road extraction base on Zernike algorithm on SAR image," in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016, pp. 1274-1277.
[6] K. Y. Win and S. Choomchuay, "Automated segmentation of cell nuclei in cytology pleural fluid images using OTSU thresholding," in 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 2017, pp. 14-18.
[7] A. Ledda, H. Q. Luong, W. Philips, V. D. Witte, and E. E. Kerre, "Binary image interpolation based on mathematical morphology," in 2008 16th European Signal Processing Conference, Lausanne, Switzerland, 2008, pp. 1-5.
[8] A. Rebhi, S. Abid, and F. Fnaiech, "Fabric defect detection using local homogeneity and morphological image processing," in 2016 International Image Processing, Applications and Systems (IPAS), Hammamet, Tunisia, 2016, pp. 1-5.
[9] M. Gochoo et al., "Design and application of novel morphological filter used in vehicle detection," in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 2016, pp. 1-5.
[10] Y. Cao, H. Yue, J. Wu, J. Chen, and Z. Cui, "Vehicle Edge Detection Based on Multi-structure Mathematical Morphology," in 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, Jinggangshan, China, 2010, pp. 258-262.
[11] Y.-X. Lv, Z.-Q. Liu, and X.-H. Zhu, "Real-time face detection based on skin-color model and morphology filters," in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), Xi′an, China, 2003, vol. 5, pp. 3203-3207 Vol.5.
[12] K. Romić, I. Galić, and T. Galba, "Technology assisting the blind - Video processing based staircase detection," in 2015 57th International Symposium ELMAR (ELMAR), Zadar, Croatia, 2015, pp. 221-224.
[13] J. Serra, Image Analysis and Mathematical Morphology. Academic Press, Inc., 1983.
[14] E. R. Dougherty, An introduction to morphological image processing. Bellingham, Washington USA: Spie Optical Engineering Press, 1992.
[15] F. Ortiz, F. Torres, E. De Juan, and N. Cuenca, "Colour Mathematical Morphology For Neural Image Analysis," Real-Time Imaging, vol. 8, no. 6, pp. 455-465, Dec. 2002.
[16] G. Ball, C. Runge, R. Ramsey, and N. Barrett, "Systems integration and verification in an advanced smart factory," in 2017 Annual IEEE International Systems Conference (SysCon), 2017, pp. 1-5.
[17] P. Madhuri, A. S. Nagesh, M. Thirumalaikumar, Z. Varghese, and A. V. Varun, "Performance analysis of smart camera based distributed control flow logic for machine vision applications," in 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, Australia, 2009, pp. 1-6.
[18] S. Fleck, S. Lanwer, and W. Straßer, "A smart camera approach to real-time tracking," in 2005 13th European Signal Processing Conference, Antalya, Turkey, 2005, pp. 1-4.
[19] B. Navara and S. Bodda, "Embedded-vision solution to interpret and integrate point-of-care clinical diagnostics," in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 2016, pp. 633-637.
[20] Y. Huang, J. Gu, S. Wang, H. Xiao, and K. Yuan, "Vision based embedded tiny spur gear inspection and measurement system," in 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2016, pp. 1679-1684.
[21] Y. Liu and C. Pomalaza-Raez, "A low-complexity algorithm for the on-chip moment computation of binary images," in 2009 International Conference on Mechatronics and Automation, Changchun, China, 2009, pp. 1871-1876.
[22] E. Young, "The application of parallel DSP networks to real time image processing," in IEE Colloquium on Application of Machine Vision, London, UK,, 1995, pp. 11/1-11/6.
[23] H. J. Park, K. B. Kim, J. H. Kim, and S. Kim, "A novel motion detection pointing device Using a binary CMOS image sensor," in 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 2007, pp. 837-840.
[24] M. Laiho, J. Poikonen, and A. Paasio, "Space-dependent binary image processing within a 64x64 mixed-mode array processor," in 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 2009, pp. 189-192.
[25] S. Save and K. Jadhav, "Defect detection of roller surfaces based on FPGA image processing," in International Conference & Workshop on Electronics & Telecommunication Engineering (ICWET 2016), Mumbai, India, 2016, pp. 117-122.
[26] B. Chandra and M. Sharma, "Segmentatation based feature extraction of MRI images using Wavelet and implementation on FPGA," in 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 2016, pp. 135-141.
[27] Y. H. Zou, J. Wen, H. Y. Xing, and Y. Zhu, "Rapid eye movement tracking method based on FPGA," in 2016 International Conference on Machine Learning and Cybernetics (ICMLC), Jeju, South Korea, 2016, vol. 2, pp. 1021-1025.
[28] E. C. Pedrino, J. H. Saito, and V. O. Roda, "Architecture for binary mathematical morphology reconfigurable by genetic programming," in 2010 VI Southern Programmable Logic Conference (SPL), Ipojuca, Brazil, 2010, pp. 93-98.
[29] S. Dinesh and G. Vairavel, "VLSI implementation of reconfigurable processing modulefor binary and grayscale image processing," in 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 2014, pp. 1-4.
[30] B. Zhang, K. Mei, and N. Zheng, "Reconfigurable Processor for Binary Image Processing," IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 5, pp. 823-831, Oct. 2013.
[31] A. Dalloo and A. Garcia-Ortiz, "A programmable and reconfigurable core for binary image processing," in 2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Tallinn, Estonia, 2016, pp. 1-6.
[32] H. Luo and Z. Shao, "A Shadow Detection Method from Urban High Resolution Remote Sensing Image Based on Color Features of Shadow," in 2012 Fourth International Symposium on Information Science and Engineering, Shanghai, China, 2012, pp. 48-51.
[33] B.-R. Chen, "Embedded Hardware Design of a Fast Stereo Vision System," master, Computer Science & information Engineering, National Central University, 2010.
[34] H. Flatt, S. Blume, S. Hesselbarth, T. Schunemann, and P. Pirsch, "A parallel hardware architecture for connected component labeling based on fast label merging," in 2008 International Conference on Application-Specific Systems, Architectures and Processors, Leuven, Belgium, 2008, pp. 144-149.
[35] P. Hochong and R. T. Chin, "Decomposition of arbitrarily shaped morphological structuring elements," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 1, pp. 2-15, Jan. 1995.
[36] Y. Zhang and L. Wu, "Recursive Structure Element Decomposition Using Migration Fitness Scaling Genetic Algorithm," in Advances in Swarm Intelligence: Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011, Proceedings, Part I, Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 514-521.
[37] X. Zhuang and R. M. Haralick, "Morphological structuring element decomposition," Computer Vision, Graphics, and Image Processing, vol. 35, no. 3, pp. 370-382, Sep. 1986.
[38] Y. Zhang, S. Wang, Y. Sun, G. Ji, P. Phillips, and Z. Dong, "Binary Structuring Elements Decomposition Based on an Improved Recursive Dilation-Union Model and RSAPSO Method," Mathematical Problems in Engineering, vol. 2014, p. 12, Apr. 2014, Art. no. 272496.
[39] H. Park and J. Yoo, "Structuring element decomposition for efficient implementation of morphological filters," IEE Proceedings - Vision, Image and Signal Processing, vol. 148, no. 1, pp. 31-35, Feb. 2001.
[40] R. F. Hashimoto and J. Barrera, "A note on Park and Chin′s algorithm [structuring element decomposition]," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 139-144, Aug. 2002.
[41] R. F. Hashimoto, J. Barrera, and C. E. Ferreira, "A Combinatorial Optimization Technique for the Sequential Decomposition of Erosions and Dilations," Journal of Mathematical Imaging and Vision, vol. 13, no. 1, pp. 17-33, Aug. 2000.
[42] H.-L. Chen, "Design and Implementation of Hardware Accelerator for Embedded Object Detection," master, Computer Science & Information Engineering, National Central University, 2014.
[43] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, no. Supplement C, pp. 48-66, Jul. 2017.
[44] T. Inc., DE10-Lite User Manual. Terasic Inc., 2016, p. 74.
[45] STMicroelectronics, UM1974 User Manual. STMicroelectronics, 2017, p. 81.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2018-3-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明