博碩士論文 104521108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:18.216.233.58
姓名 劉俊良(Jyun-Liang Liou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於全通網路與鐵電可變電容之阻抗調制器
(An Impedance Tuner Based on All-Pass Networks and Ferroelectric Varactors)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用全通網路設計相位偏移器和可調變壓器,並結合兩者來實現一阻抗調制器。使用此架構,我們可分別調制相位偏移器與可調變壓器,以獨立控制反射係數之相位與大小。與常見的Π型或T型可調匹配網路相較,本論文提出之阻抗調制器架構具有操作方式直觀且方便的優點,適合應用於可適性匹配系統之中。
本論文提出之阻抗調制器由兩級相位偏移器和一級可調變壓器組成,皆基於全通網路結構。阻抗調制器之操作頻率設計於2.45 GHz;設計流程描述於論文中。全通網路中的電容是以本實驗室開發的鐵電可變電容來實現,電感則使用商用0201表面黏著電感元件。模擬結果顯示,當鐵電可變電容具2.2的可調度時,設計之阻抗調制器可提供之最大的VSWR為4.83,並可以提供360°的阻抗涵蓋範圍於史密斯圖上。在阻抗涵蓋範圍內,阻抗調制器的dissipation loss為2至13.5 dB。
所提出之阻抗調制器使用本實驗室所開發的製程來製作於藍寶石基板上;本製程可製作的元件包括鐵電薄膜可變電容及本實驗室首度整合進電路的矽化鉻薄膜電阻。製作出之阻抗調制器,其量測結果顯示最大的VSWR僅達2.33,且無法提供360°之阻抗涵蓋範圍。我們推測這是由於鐵電可變電容在偏壓提高後就有較大的漏電流及較低的Q值,使得電容可調度、相移器之相移量和可調變壓器可達到之VSWR皆有所下降。我們將量測到的測試電容值和Q值帶回電路重新模擬,並降低可調度,重新模擬後可較貼近量測結果。
本論文展現出全通網路用於實現阻抗調制器之潛力,並是本實驗室首次使用矽化鉻薄膜來實現偏壓電阻,大幅降低了電路面積。
摘要(英) In this thesis, phase shifter and variable transformer are designed using all-pass networks (APNs) and combined to realize an impedance tuner. With the proposed architecture, we can independently control the phase and magnitude of the reflection coefficient by separately adjusting the phase shifter and the variable transformer. Compared with the common Π- or T-shaped tunable matching networks, the proposed impedance tuner architecture exhibits the advantage of straightforward and convenient way of operation, which is good for adaptive matching system application.
The proposed impedance tuner consists of a two-stage phase shifter and a one-stage variable transformer, both of which are based on APNs. The impedance tuner is designed to operate at 2.45 GHz. Design procedures and considerations are described. The capacitors within the APNs are realized by ferroelectric varactors developed in our lab, whereas the inductors are commercially available 0201 surface mount devices. Simulation results show that, when the ferroelectric varactors exhibit a tunability of 2.2, the designed impedance tuner is able to provide a maximum VSWR of 4.83 and a full 360° impedance coverage over the Smith Chart. Within the impedance coverage, the dissipation loss ranges from 2 to 13.5 dB.
The proposed impedance tuner is realized on a sapphire substrate using a fabrication process developed by our lab. The fab process offers ferroelectric thin-film varactor and CrSi2 thin-film resistor. In this work, the CrSi2 thin-film resistor is, for the first time in our lab, used in an integrated circuit. Measurement results of the fabricated impedance tuner show that the maximum VSWR is 2.33 and full 360° impedance coverage is not achieved. We suspect that the reason for the degraded performance is the higher leakage current and lower quality factor of the ferroelectric varactors as the bias voltage increases, which leads to lower varactor tunability, less phase shift, and reduced maximum achievable VSWR. In the re-simulation, measured capacitances and quality factors of test varactors are used and lower varactor tunability values are assumed. It is found that the re-simulation results fit better to the measured results.
In this work, we demonstrate the potential of using APNs for realizing impedance tuners and, for the first time in our lab, realize bias resistors in an integrated circuit with CrSi2 thin film, which leads to a much smaller circuit area.
關鍵字(中) ★ 阻抗調制器
★ 鐵電可變電容
★ 全通網路
關鍵字(英) ★ Impedance tuner
★ Ferroelectric varactors
★ All-pass networks
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1–1 研究動機 1
1–2 文獻回顧 2
1–3 論文架構 3
第二章 理論分析與設計 4
2–1 簡介 4
2–2 全通網路 5
2–3 相位偏移器(phase shift)之分析與設計 8
2–4 可調變壓器(variable transformer)之分析與設計 12
2–5 阻抗調制器(impedance tuner)之分析與設計 16
第三章 電路製作與量測結果 23
3–1 電路製程與製作 23
3–1–1 Metal1(電容下電極)製作流程 23
3–1–2 鐵電薄膜沉積 25
3–1–3 Metal2(電容上電極)製作流程 26
3–1–4 鐵電薄膜介電層製作流程 27
3–1–5 氮化矽保護層之沉積與製作流程 28
3–1–6 矽化鉻薄膜電阻之沉積與製作過程 29
3–1–7 氮化矽保護層開孔流程 30
3–1–8 Metal3製作流程 31
3–2 量測結果 34
第四章 結論 45
參考文獻 47
附錄 49
阻抗調制器製作流程 49

參考文獻 [1] K. R. Boyle,“The performance of GSM 900 antenna in the presence of people and phantoms,” in IEEE Int. Conf. Antennas and Propagation, Mar. 2003, vol. 1, pp. 35–38.
[2] K. R. Boyle, Y. Yuan, and L. Lighthart,“Analysis of mobile phone antenna impedance variations with user proximity,”IEEE Trans. Antennas Propag., vol. 55, pp. 364–372, Feb. 2007.
[3] A. van Bezooijen, R. Mahmoudi, and A. H. M. van Roermund, “Adaptive methods to preserve power amplifier linearity under antenna mismatch conditions,”IEEE Trans. Circuits Syst. I, vol. 52, no. 10, pp. 2101–2108, Oct. 2005.
[4] W.-C. Chen,“Design and fabrication of phase shifters based on all-pass network,”Master dissertation, National Central University, 2011.
[5] J.-S. Fu,“Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph. D. dissertation, The University of Michigan, 2009.
[6] D. Adler and R. Popovich,“Broadband switched-bit phase using all-pass networks,”IEEE MTT-S International Microwave Symposium Digest, July 1991, pp. 265–268.
[7] X. Tang and K. Mouthaan,“Design of large bandwidth phase shifters using common mode all-pass networks,”IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 55–57, Feb. 2012.
[8] George L. Ragan,“Microwave Transmission Circuits,” McGRAW-HILL BOOK COMPANY, INC., pp. 466-472, 1948.
[9] J. Cusack, S. Perlow, and B. Perlman, Automatic load contour map-ping for microwave power transistors,”IEEE Trans. Microw. Theory Tech., vol. MTT-22, no. 12, pp. 1146–1152, Dec. 1974
[10] Y. Lu, L. P. B. Katehi, and D. Peroulis,“High-power MEMS varactors and impedance tuners for millimeter-wave applications,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3672–3678, Nov. 2005.
[11] S. Jeong, J. Jeong, and Y. Jeong,“A Design of a Impedance Tuner With Programmable Characteristic for RF Amplifiers,”IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 473–475, May 2017.
[12] MT981BL10 High-Power Automatic Tuners, Maury Microw., Ontario, CA, USA.
[13] Y. Bae, U. Kim, and J. Kim,“A programmable impedance tuner with finite SWRs for load-pull measurement of handset power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 4, pp. 268–270, Apr. 2015.
[14] Q. Shen and N. S. Barker,“Distributed MEMS tunable matching network using minimal-contact RF-MEMS varactors,” IEEE Trans. Microw. Theory Tech., vol. 5, no. 6, pp. 2646–2658, Jun. 2006.
[15] R. K. Waits,“Silicide resistors for integrated circuits,” Proc. IEEE, vol. 59, pp. 1425–1429, Oct. 1971.
[16] T.-W. Ding,“Fabrication and Measurement of Ferroelectric Varactors with Through Substrate Vias on Silicon and Chromium Silicide Thin-Film Resistors,” Master dissertation, National Central University, 2017.
[17] C.-T. Yu,“An integrated passive device process featuring ferroelectric varactors and its application in the fabrication of a microwave phase shifter,”Master dissertation, National Central University, 2015.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明