博碩士論文 104323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.216.233.58
姓名 謝昇均(Sheng-Chun Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 加壓型氨固態氧化物燃料電池之實驗研究
(An Experimental Investigation of Pressurized Ammonia Solid Oxide Fuel Cell)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用已建立之高溫高壓雙腔體固態氧化物燃料電池(SOFC)實驗平台,搭配自製鈕扣型(小面積)和平板型(大面積)全電池測試載具,針對以氨為燃料,量測氨陽極支撐型全電池(Anode-Supported Cell, ASC)之電池性能曲線及其電化學阻抗頻譜,並探討其溫度、流率、壓力效應和不同反應面積之影響,也與氫燃料之結果作比較。本論文含四個部分:(1)比較ASC兩種不同陰極材料(i.e. lanthanum strontium cobaltite, LSC; lanthanum strontium cobaltite ferrite, LSCF)之電池性能與電化學阻抗頻譜;(2)氨ASC(Ni-YSZ/YSZ/LSC) 之壓力效應(1、3atm)和其穩定性測試分析;(3)氨ASC( Ni-YSZ/YSZ/LSC)於三個不同溫度600、650、700°C條件下,探討流率效應對電池性能之影響;(4)比較大面積(16 cm2)和小面積(1.54 cm2)之ASC的壓力效應對電池性能之影響。由第一與第二部分之結果顯示,當溫度為750~850°C時,使用氨燃料之電池性能幾乎與氫燃料相近,因氨氣在溫度於750°C以上時會裂解成氫氣與氮氣,隨後氫和氧反應成水。無論是使用氫氣或是氨氣燃料,提升溫度和壓力均可提升電池性能,兩者皆可使總極化阻抗減小,而歐姆阻抗則與加壓效應無關,但歐姆阻抗會隨溫度增加而下降。LSC材料因其電子導電率較LSCF材料高,故其電池性能較佳。於氨ASC之穩定性量測方面,在固定溫度750°C 、定電壓0.8V和1、3atm下,進行90分鐘穩定性測試,結果顯示氨ASC在穩定性測試期間並無電池劣化發生,且性能還略為提升1-3%,顯示氨SOFC在溫度750°C或以上具有良好的性能和使用壽命。
第三部份結果顯示,在溫度為600°C下,提升氨氣的流率並不能有效提升電池性能,因氨氣流率提升會降低其滯留時間,而氨氣裂解率會隨滯留時間減少而下降,導致陽極端的氫氣濃度降低。在流率提升的同時也會提升極化阻抗,因未參與反應的氮氣和生成物的增加影響了氣體的擴散所致。有關第四部分結果,從電化學阻抗來看,小面積電池片主要是由氣體擴散(特徵頻率10~100Hz)所主導,而大面積電池片主要是由氣體轉移(特徵頻率< 1Hz)所主導。這是因為大面積電池片燃料的消耗速率較快,因此出口燃氣少,產物多使氣體轉移阻抗增加。經加壓後,兩者總極化阻抗皆有所減少,表示加壓有助於提升電池性能。本研究成果對於未來開發氨SOFC為主的發電系統應有所助益。
摘要(英) This thesis applies an already-established high-pressure and high temperature SOFC testing platform using a button cell (smaller reactive area; 1.54cm2) and a planar cell (large reactive area; 16cm2) to measure the cell performance and electrochemical impedance spectroscopy of anode-supported cell (ASC) fueled with ammonia. We investigate the impact of the temperature (T), the flow rate and the pressure (p) on the cell performance of different cells with different reactive area. Then we compare the results of both ammonia and hydrogen SOFCs. This study includes four parts. First, we compare the cell performance and electrochemical impedance spectroscopy of two ASC which has different cathode materials (i.e. lanthanum strontium cobaltite, LSC; lanthanum strontium cobaltite ferrite, LSCF). The second part is to measure the pressurization effect and the stability test of ASC (Ni-YSZ/YSZ/LSC) using by ammonia as a fuel. The third part is to investigate the flow rate effect of cell performance of ASC (Ni-YSZ/YSZ/LSC) fueled by ammonia at three different temperatures (600、650、700 oC). The fourth part is to compare the pressurized effect of ASC which has different reactive area. For the first and second parts, results show that at 750~850 oC, two kinds of ASC using ammonia as a fuel have almost the same cell performance as hydrogen-fueled SOFCs. This is because at 750 oC and above ammonia decomposes into H2 and N2, then following by H2 oxidation reaction to form H2O. Regardless of fuels (ammonia or hydrogen), the cell performance increases with increasing p and T. It is found that the ohmic polarization resistance is independent of p, but it decreases with increasing T. The total polarization resistances decrease with increasing T and p. The cell with different cathode material of LSC has higher electronic conductivity than LSCF, so it has better cell performance. The stability test of ASC is conducted at 750 oC under both 1 atm and 3 atm and at 0.8 V. After 90 minutes stability test, the cell of ASC fueled with ammonia has no degradation, even with a slight increase of power density (1-3%).
The third part shows that increasing the flow rate of ammonia cannot increase the cell performance when the temperature at 600 oC and below. Because increasing the flow rate can decrease the fuel residence time and the ammonia decomposition decreases with decreasing the residence time, resulting in the lower hydrogen concentration in the vicinity of anode. Thus the increase of flow rate can result in an increase of the total polarization resistances, since the product and nitrogen can increase the gas diffusion. The fourth part is to compare the pressurized effect of ASC which has different reactive area. From the EIS data, we find that the smaller reactive area of ASC is dominated by the gas diffusion having characteristic frequencies between 10~100Hz. For the larger reactive area of ASC, the dominated polarization is via gas conversion having characteristic frequencies less than 1 Hz. Such difference is that the larger reactive area of ASC can consume the fuel faster, resulting in less fuel and more product in the outlet gas which in turn increases the gas conversion resistance. The total polarization resistances decrease with increasing p for both small and large reactive area of ASCs, indicating that pressurization increases the cell performance. These results should be useful for the future development of ammonia SOFC power generation system.
關鍵字(中) ★ 加壓SOFC
★ 平板型陽極支撐全電池
★ 氨氣
★ 電化學阻抗頻譜
★ 流率效應
關鍵字(英) ★ Pressurized SOFC
★ planar anode-supported full cell
★ ammonia
★ electrochemical impedance spectra
★ flow rate effect
論文目次 目錄
摘 要 ……………………………………………………………………………i
致 謝 …………………………………………………………………………...v
目錄 ………………………………………………………………………..…vi
表目錄 ………………………………………………………………………....viii
圖目錄 …………………………………………………………………......…... ix
符號說明……………………………………………………………………… xi
第一章 前言……………………………………………………………… 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 4
1.4 論文綱要 4
第二章 文獻回顧 ………………………………………………………… 6
2.1 SOFC之簡介與種類 6
2.2 SOFC運作原理和極化現象 8
2.2.1 活化極化 10
2.2.2 歐姆極化 10
2.2.3 濃度極化 11
2.3 電化學阻抗頻譜與等效電路模組 12
2.4 SOFC使用氨氣文獻探討 15
2.4.1 改變陽極材料 (見表2.1) 17
2.4.2 改變操作溫度 (見表2.2) 18
2.4.3 改變操作條件 20
第三章 實驗設備與量測方法 ………………………………………….. 28
3.1 高壓SOFC實驗平台 28
3.2 實驗流程與量測操作參數設定 32
第四章 結果與討論 …………………………………………………….. 40
4.1 氫氣與氨氣於不同溫度下之性能與阻抗頻譜比較 40
4.2 ASC於不同陰極材料之性能比較 40
4.3 使用不同流率之氫氣與氨氣於不同溫度下之比較 42
4.4 加壓效應對於氨SOFC之影響 44
4.5 氨SOFC之穩定性分析 45
4.6 平板型ASC與鈕扣型ASC比較 46
4.6.1 分別使用氫氣和氨氣電池性能之比較 46
4.6.2 加壓效應對平板型ASC與鈕扣型ASC之影響與比較 47
第五章 結論與未來工作…………………………………………………. 62
參考文獻………………………………………………………………………. 65

參考文獻 [1] S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
[2] A. B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455, 2002.
[3] S. P. S. Badwal, K. Foger, Solid Oxide Electrolyte Fuel Cell Review, Ceramics International, Vol. 22, pp. 257-265, 1996.
[4] Y. Kobayashi, Y. Ando, T. Kabata, M. Nishiura, K. Tomida, N. Matake, Extremely high efficiency thermal power system-solid oxide fuel cell (SOFC) triple combined-cycle system, Mitsubishi Heavy Industries Technical Review, Vol. 48, pp. 9-15, 2011.
[5] S. E. Veyo, L. A. Shockling, J. T. Dederer, J. E. Gillet, W. L. Lundberg, Tubular solid oxide fuel cell/gas turbine hybrid cycle power system: Status, Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 845-849, 2002.
[6] Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, K. Takenobu, Development of next-generation large-scale SOFC toward realization of a hydrogen society, Mitsubishi Heavy Industries Technical Review, Vol. 52, pp. 111-116, 2015.
[7] J. C. Poshusta, A. Kulprathipanja, J. L. Martin, C. M. Martin, Design and integration of portable SOFC generators, Mesoscopic Devices, LLC, Broomfield, CO
[8] K. Hayashia, O. Yamamoto, H. Minoura, Portable solid oxide fuel cells using butane gas as fuel, Solid State Ionics, Vol. 132, pp. 343-345, 2000
[9] S. Farhad, F. Hamdullahpur, Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system, Journal of Power Sources , Vol. 195, pp. 3084-3090, 2010.
[10] Cross-ministerial Strategic Innovation Promotion Program (SIP)-Energy Carriers, Japan Science and Technology Agency, 2016.
[11] A. Wojcik, H. Middleton, I. Damopoulos, J. Van herle, Ammonia as a fuel in solid oxide fuel, Journal of Power Sources, Vol.118, pp.342–348, 2003.
[12] G.G.M. Fournier, I.W. Cumming, K. Hellgardt, High performance direct ammonia solid oxide fuel cell, Journal of Power Sources, Vol.162, pp.198–206, 2006.
[13] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, Journal of Power Sources, Vol.305,pp.72-79, 2016.
[14] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic influence of oxide component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells , Fuel Cells, Vol. 15, pp. 390-397, 2015.
[15] J.Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3−δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces, Vol.7, pp.7406−7412, 2015.
[16] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte, Journal of Power Sources, Vol. 164, pp. 86-89, 2007.
[17] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, A high-performance ammonia-fueled solid oxide fuel cell, Journal of Power Sources, Vol. 161, pp. 95-98, 2006.
[18] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A stability study of Ni/Yttria-Stabilized Zirconia anode for direct ammonia Solid Oxide Fuel Cells, ACS Applied Materials Interfaces, Vol. 7, pp. 28701–28707, 2015.
[19] A. Fuertea, R.X. Valenzuelaa, M.J. Escuderoa, L. Daza, Ammonia as efficient fuel for SOFC, Journal of Power Sources, Vol. 192, pp. 170–174, 2009.
[20] G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen, Journal of Power Sources, Vol. 173, pp. 189-193, 2007.
[21] Q. Ma, R. Peng, L. Tian, G. Meng, Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells, Electrochemistry Communications, Vol. 8, pp. 1791-1795, 2006.
[22] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Transactions, Vol. 68(1), pp. 2751-2762, 2015.
[23] V. Singh, H. Muroyama, T. Matsui, K. Eguchi, Influence of cell design on the performance of direct ammonia-fueled solid oxide fuel cell : anode- vs. electrolyte-supported cell, ECS Transactions, Vol. 78(1), pp. 2527-2536, 2017.
[24] P. C. Wu, H. S. Jheng, S. S. Shy, Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 161(4), F513-F517, 2014.
[25] S. S. Shy, Y. D. Hsieh, C. M. Huang, Y. H. Chan, Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte Planar Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 162(3), F1-F6, 2015.
[26] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[27] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。
[28] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013。
[29] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗頻譜實驗研究,碩士論文,國立中央大學,2014。
[30] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,2015。
[31] 徐晧修,氨SOFC之實驗研究:陽極支撐與電解質支撐電池性能之比較,碩士論文,國立中央大學,2016。.
[32] C. T. Garibay, D. Kovar, A. Manthiram, Ln0.6Sr0.4Co1−yFeyO3−δ (Ln = La and Nd; y = 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells, Journal of Power Sources, Vol. 187, pp. 480-486, 2009.
[33] M. Henke, J. Kallo, W. G. Bessler, Influence of pressurisation on SOFC performance and durability: A theoretical study, Fuel Cells, Vol. 11, pp. 581-591, 2011.
[34] M. Han, X. Tang, H. Yin, S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs, Journal of Power Sources, Vol. 165, pp. 757-763, 2007.
[35] S. C. Singal, Solid oxide fuel cell for stationary, mobile, and military applications, Solid State Ionics, Vol. 152 pp. 405-410, 2002.
[36] University of Cambridge, TLP Libriary, http://www.doitpoms.ac.uk/tlplib/fuel- cells/sofc_electrolyte.php
[37] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[38] A. Endo, H. Fukunag, C. Wenb, K. Yamada, Cathodic reaction mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 electrodes for solid oxide fuel cells, Solid State Ionics, Vol. 135 pp. 353-358, 2000.
[39] J. Fleig, SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance, Annual Review of Materials Research, Vol. 33, pp. 361-382, 2003.
[40] S. C. Singhal, Solid Oxide Fuel Cells: An Overview, Preprints of Papers- American Chemical Society, Division of Fuel Chemistry, Vol. 24, pp. 478-479, 2004.
[41] M. Stelter, A. Reinert, B. E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producible solid oxide fuel cell stack design for diesel auxiliary power units, Journal of Power Sources, Vol. 154, pp. 448-455, 2006.
[42] N. H. Menzler, J. Malzbender, P. Schoderböck, R. Kauert, H. P. Buchkremer, Sequential tape casting of anode-supported solid oxide fuel cells, Fuel Cells, Vol. 14, pp. 96-106, 2014.
[43] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources, Vol. 177, pp. 254-261, 2008
[44] M. M. Hussain, X. Lia, I. Dincer, A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, Journal of Power Sources, Vol. 189, pp. 916-928, 2009.
[45] D. Sarantaridis, A. Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cell, Vol. 7, No. 3, pp. 246-258, 2007.
[46] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, Vol. 45, pp. 2423-2425, 2000.
[47] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2010。
[48] S. H. Chan, K. A. Khor, Z. T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources, Vol. 93, pp. 130-140, 2001.
[49] F. Zhao, A.V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources, Vol. 141, pp. 79-95, 2005.
[50] J.C. Njodzefon, D. Klotz, A. Kromp, A. Weber, and E. Ivers-Tiff´ee, Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyzer Operation Modes, Journal of The Electrochemical Society, Vol. 160, pp. F313-F323, 2013.
[51] M. Ni, M. K. H. Leung, D. Y. C. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[52] W.G. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry, J. Electrochem. Soc., Vol. 154, pp. B548-B559, 2007.
[53] S. Primdahl, M. Mogensen, Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 145, pp. 2431-2438, 1998.
[54] S. Primdahl, M. Mogensen, Gas diffusion impedance in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 146, pp. 2827-2833, 1999.
[55] Bessler, W.G., Gas concentration impedance of solid oxide fuel cell anodes I. Stagnation point flow geometry, J. Electrochem. Soc., Vol. 153, pp. A1492-A1504, 2006.
[56] Liu, B., Muroyama, H., Matsui, T., Tomida, K., Kabata, T., Eguchi, K., Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, J. Electrochem. Soc., Vol. 158, pp. B215-224, 2011.
[57] J. B. Jorcin, M. E. Orazem, N. Pébére, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochemica Acta, Vol. 51, pp. 1473-1479, 2006.
[58] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, Journal of The Electrochemical Society, Vol. 155, pp. B36-B41, 2008.
[59] L. Zhang, W.Yang, Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte, Journal of Power Sources, Vol. 179, pp. 92-95, 2008.
[60] N. Maffei, L. Pelletier, J.P. Charland, A. McFarlan, An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte, Journal of Power Sources, Vol. 162, pp. 165-167, 2006.
[61] N. Meng, D.Y.C. Leung, M.K.H. Leung, Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte, Journal of Power Sources, Vol. 183, pp. 682-686, 2008.
[62] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011.
[63] V. A. C. Haanappel, M. J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[64] A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behaviors of Ni–YSZ anode for the direct utilization of ammonia fuel in solid oxide fuel cells, Journal of The Electrochemical Society, Vol. 162, pp. F1268-F1274, 2015.
指導教授 施聖洋 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明