以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:103 、訪客IP:3.144.252.58
姓名 許凱翔(KAI-HSIANG HSU) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 利用化學氣相沉積法於規模化合成大面積石墨烯之研究
(Scalable chemical vapor deposition method for synthesizing large area graphene)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 石墨烯(Graphene),只有單一個原子層厚度(0.34 nm)的石墨薄膜,具有優異的載子傳輸速率(200,000 cm2V-1s-1)、機械強度(1,100 GPa)、光穿透率(>97%)、化學穩定性、耐高曲度彎折,被認為是能取代ITO的候選材料之一,不僅能廣泛運用於穿戴式元件開發,需在嚴苛環境下的元件(如太陽能電光電板)也能提高運作壽命。化學氣相沉積法(Chemical Vapor Deposition, CVD)於過渡金屬基板上成長石墨烯薄膜的為目前的主流方法,具有大面積及高均勻性的優點,相當具有工業化的潛力,但化學氣相沉積法成本較高,為了降低其成本以利工業化生產,本實驗主要採用兩種不同的方法研究可規模化大面積製備石墨烯的成長,分別為連續式電漿化學氣相沉積(Roll to roll plasma-enhanced chemical vapor deposition, R2R-PECVD)以及批量式化學氣相沉積(Batch to batch chemical vapor deposition, B2B-CVD),在R2RCVD的部分,藉由調整不同的氬氣、氫氣、甲烷比例,溫度、電漿功率、成長時間,尋找最佳化參數已達成連續式的成長以及機制的探討。此外,B2BCVD的部分,為了能在有限的腔體內,單批次成長大面積石墨烯,將銅箔以繞捲的方式成長,並放入支架或隔絕層,避免銅箔因高溫而黏合,支架材料為石英,隔離層為氧化鋁及碳布,探討成長石墨烯品質差異與機制探討。PECVD因氫氣蝕刻影響,只有破碎的石墨烯片層,增加柵狀過濾器能有效降低缺陷,缺陷密度從8.77×1012 cm-2降至3.3×1012 cm-2,降低幅度約為60%,但依舊是破碎片層,無法成長連續石墨烯薄膜,而利用碳布繞捲成長的方法,可以得到面積5cm×100cm的大面積石墨烯,晶格大小約為20 μm,其平均片電阻達750 Ω/sq,ID/IG比為0.3,I2D/IG比為0.9,缺陷密度2.43×1012 cm-2,載子遷移率1000 cm2V-1s-1。 摘要(英) Graphene, a single graphite film with only one atomic layer thickness (0.34 nm), has excellent properties such as electron mobility (200,000 cm2V-1s-1), mechanical strength (1,100 GPa), the optical transmittance (> 97 %), chemical stability, high bending strength. It can not only be used in wearable devices but also be applied in photovoltaic panels to increase its stability. Thus, graphene has been considered as one of the promising materials to replace ITO (Indium Tin Oxide) in the future.
Chemical Vapor Deposition (CVD) is a mainstream method for growing graphene thin films on a transition metal substrate. By using this method, we can make large area and high uniformity graphene. However, the high cost limits its application for industrialization. In this experiment, we develop two methods, Roll to roll plasma-enhanced chemical vapor deposition (R2R-PECVD) and Batch to batch chemical vapor deposition (B2B-CVD) to reduce the cost to facilitate the industrialized production. In R2RCVD, different gas flow rate, temperature, plasma strength, and time have been considered to find the optimized condition for continuous growth. About B2B-CVD, to grow large-scale graphene in limited furnace tube. Rolling the copper foil and inserting quartz and carbon cloth, and aluminum oxide to prevent copper foil adhesion in high temperature.The quatz is used as scaffold. For carbon cloth and aluminum oxide, they were used as intercalation material. About PECVD, we couldn’t get continuous graphene because of the hydrogen etching effect. Although we can decrease the defect density from 8.77×1012 cm-2 to 3.33×1012 cm-2 by installing filter. The decreasing rate is approximate 60%, but graphene film is not continuous. By using B2B-CVD (carbon cloth as intercalation material), a large-area graphene with an area of 5×100 cm2 was obtained, damain size about 20 μm, sheet resistance only 750 Ω / sq, ID/IG radio 0.3, I2D/IG radio 0.9, defect density 2.43×1012 cm-2,and its charge carrier mobility ~1000 cm2V-1s-1.
關鍵字(中) ★ 石墨烯
★ 大面積成長
★ 化學氣相沉積法關鍵字(英) ★ graphene
★ synthesizing large area
★ chemical vapor deposition論文目次 總目 錄
摘要 .................................................................................................................................... i
Abstract ............................................................................................................................. ii
誌謝 .................................................................................................................................. iii
總目錄 .............................................................................................................................. iv
圖目錄 .............................................................................................................................. vi
表目錄 ............................................................................................................................... x
第一章 緒論 ..................................................................................................................... 1
第二章 文獻回顧與研究背景 ......................................................................................... 1
2-1 化學氣相沉積法[8] ........................................................................................................... 1
2-2 捲對捲轉印石墨烯薄膜[20] ............................................................................................. 1
2-3 捲對捲微波電漿化學氣相沉積法(roll-to-roll microwave plasma chemical vapor deposition, R2R MWPCVD)[21] .............................................................................................. 3
2-4 捲對捲生產及轉印石墨烯[22] ......................................................................................... 4
2-5 同心管化學氣相沉積法(concentric tube CVD, CTCVD)[23] ..................................... 5 2-6 電漿輔助化學氣相沈積(Plasma-enhanced chemical vapor deposition, PECVD)[25] ... 6
2-7 螺旋繞捲 ........................................................................................................................... 7
2-8 研究動機 ........................................................................................................................... 8
第三章 實驗架構與流程 ............................................................................................. 10
3-1 實驗用品清冊 ............................................................................................................... 10
3-2 實驗儀器 ....................................................................................................................... 10
3-3 實驗流程 ....................................................................................................................... 11 3-3-1 電漿輔助化學氣相沉積法 (Plasma-enhanced chemical vapor deposition) ......................... 11
3-3-2 批量生產化學氣相沉積法 (Batch to batch chemical vapor deposition) .............................. 13
3-3-3轉印與分析 ............................................................................................................................. 14
3-3-4 均勻度分析 ............................................................................................................................ 15
3-3-5摻雜改質 ................................................................................................................................. 16
第四章 結果與討論 ..................................................................................................... 17
4-1 捲對捲電漿輔助化學氣相沉積法 ............................................................................... 17
4-1-1電漿輔助化學氣相沉積法參數調控 ...................................................................................... 17
4-1-2 低缺陷電漿輔助化學氣相沉積法 ......................................................................................... 19
4-1-3 降低蝕刻因素 ........................................................................................................................ 21
4-2 批量化學氣相沉積法(B2BCVD) ................................................................................. 24
4-2-1 螺旋狀石英管化學氣相沉積法 ............................................................................................. 24
4-2-2 碳布繞捲化學氣相沉積法..................................................................................................... 27
4-2-3 優化成長參數 ........................................................................................................................ 28
4-2-4 規模化成長 ............................................................................................................................ 32
4-2-5 成長機制觀察與討論 ............................................................................................................ 34
4-2-6 改變氣流 ................................................................................................................................ 37
4-2-7 二階段成長 ............................................................................................................................ 39
4-2-7 調整成長時間 ........................................................................................................................ 42
4-2-8 降低二次成核 ........................................................................................................................ 44
4-2-9 碳布繞捲成長與開放式的差異 ............................................................................................. 45
4-2-9 改質分析 ................................................................................................................................ 47
4-2-10 產率 ...................................................................................................................................... 48
第五章 結論 ................................................................................................................. 52
第六章 未來工作 ......................................................................................................... 52
參考文獻 ......................................................................................................................... 53參考文獻 1. Schwierz, F., Graphene transistors. Nat Nanotechnol, 2010. 5(7): p. 487-96.
2. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008. 3(5): p. 270-4.
3. Park, H., et al., Doped graphene electrodes for organic solar cells. Nanotechnology, 2010. 21(50): p. 505204.
4. Gopalakrishnan, K., et al., Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B- and N-doped graphenes. Chemical Physics Letters, 2011. 511(4-6): p. 304-308.
5. Hsu, Y.-W., et al., Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimica Acta, 2012. 82: p. 152-157.
6. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
7. Tetlow, H., et al., Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014. 542(3): p. 195-295.
8. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
9. Ciesielski, A. and P. Samori, Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 2014. 43(1): p. 381-98.
10. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
11. Su, C.-Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011. 5(3): p. 2332-2339.
12. Wang, Y., et al., Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009. 95(6): p. 063302.
13. Kang, J., et al., High-Performance Graphene-Based Transparent Flexible Heaters. Nano Letters, 2011. 11(12): p. 5154-5158.
14. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
15. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
16. An, H., W.-J. Lee, and J. Jung, Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011. 11(4): p. S81-S85.
17. Kim, E., et al., Growth of Few‐Layer Graphene on a Thin Cobalt Film on a Si/SiO2 Substrate. Vol. 17. 2011. 9-14.
18. Cushing, G.W., et al., Graphene Growth on Pt(111) by Ethylene Chemical Vapor Deposition at Surface Temperatures near 1000 K. The Journal of Physical Chemistry C, 2015. 119(9): p. 4759-4768.
19. Hesjedal, T., Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Applied Physics Letters, 2011. 98(13): p. 133106.
20. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
21. Yamada, T., et al., A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon, 2012. 50(7): p. 2615-2619.
22. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112.
23. Polsen, E.S., et al., High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep, 2015. 5: p. 10257.
24. Hee Jung, D., et al., Size and Density of Graphene Domains Grown with Different Annealing Times. Vol. 34. 2013.
25. Boyd, D.A., et al., Single-step deposition of high-mobility graphene at reduced temperatures. Nat Commun, 2015. 6: p. 6620.
26. 重慶墨希科技有限公司;中國科學院重慶綠色智能技術研究院. CN Patent NO. 104477898A (12 December, 2014)
27. 重慶墨希科技有限公司;中國科學院重慶綠色智能技術研究院. CN Patent NO. 204454598U (08 July, 2015)
28. Karlheinz Strobl, Mathieu Monville, et al., CVD graphene: Batch versus Roll to Roll Scale-up. October 31, 2014
29. Huang, C.-H., et al., Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. Carbon, 2014. 73: p. 244-251.
30. Jung, D.H., et al., Size and Density of Graphene Domains Grown with Different Annealing Times. Bulletin of the Korean Chemical Society, 2013. 34(11): p. 3312-3316.
31. P. Braeuninger-Weimer, B. Brennan, A. J. Pollard, S. Hofmann, Understanding and controlling Cu-catalyzed graphene nucleation: The role of impurities, roughness, and oxygen scavenging Chem. Mater. 28 (2016), 8905–8915.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2018-1-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare