博碩士論文 104624603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:13.58.247.31
姓名 陳緹金(Tran Thi Kim Tu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 序率模擬變飽和異質孔隙介質邊坡穩定
(Stochastic modeling of slope stability for heterogeneous and variably saturated porous media)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水水位變化對於邊坡穩定扮演重要影響角色。藉由序率方法產生設定模式輸入值變異(如土壤異質性)量化模式輸出不確定性(如邊坡位移量)。本研究目的為探討材料水力傳導係數、孔隙率與材料單位重等參數計算邊坡穩定的不確定性分析。本研究採用逐步高斯模擬法 (Sequential Gaussian Simulation), 產生隨機水力傳導係數、孔隙率、與材料單位重隨機場,並使用商業軟體FLAC3D (Fast Lagrangian Analysis of Continua in Three Dimensions) 模擬穩態地下水流場。模式固定幾何形狀與邊界條件,量化穩態流場與邊坡位移量不確定分析。模擬結果顯示水力傳導係數對於地下水位具有顯著影響。依據本研究設定之背景流場梯度,壓力水頭與地下水位變異數相較水力傳導係數具有小於1至2個數量級。在下游邊界附近具有較高壓力水頭變異,並且導致邊坡穩度較高不確定性。另外,本研究也探討孔隙率與材料單位重對於邊坡位移不確定性影響,材料單位重空間變化對於邊坡位移不確定相較於孔隙率影響較大。
摘要(英) Previous investigations have recognized the important role of groundwater variations on slope stability. Stochastic approaches are useful techniques to quantify the input uncertainty (i.e., the soil heterogeneity) on the output uncertainty (i.e., the displacement uncertainty). This study aims to develop a stochastic modeling workflow based on numerical Monte Carlo simulations. The Monte Carlo simulations involve a number of procedures including simulations of random hydraulic conductivity fields, random porosity fields, random unit weight fields. This study employs sequential Gaussian simulation method (SGSIM) model to generate random realizations of hydraulic conductivity fields, porosity fields, and unit weight fields. The commercial model FLAC3D (Fast Lagrangian Analysis of Continua in Three Dimensions) is then used for the simulations of slope stability. By collecting realizations of flow and displacement solutions in a slope with a fixed geometry and boundary conditions, the workflow can quantify the propagation of flow uncertainty on displacement uncertainty. The simulation results show that the variance of the logarithm of hydraulic conductivity significantly influences the water level variation in the slope system. The pressure head and values of water level variance values show one to two orders of magnitudes smaller than that of the logarithm of hydraulic conductivity, depending on the background flow gradients. The high-pressure head variance occurs near the downstream boundary. These high-pressure head variances also lead to high instability in the slope system. In addition, this study also discusses the influence of spatially variable porosity and unit weight parameters on the displacement uncertainty. Although the flow pattern is similar to homogeneous cases, the displacement uncertainty induced by porosity variation is relatively small as compared with the displacement uncertainty induced by spatial variation of unit weight.
關鍵字(中) ★ 不確定性
★ 異質性
★ 連續高斯模擬法
★ 蒙地卡羅模擬
★ 隨機場
★ 水力傳導係數
關鍵字(英) ★ Uncertainty
★ Heterogeneity
★ Sequential Gaussian Simulation
★ Monte Carlo Simulation
★ Random field
★ Hydraulic conductivity
論文目次 Table 1 Soil properties used in the study 17
Table 2 The range of selected soil parameters 18
Table 3 Summary of rectangle domain 19
Table 4 Summary of sloping domain 21
Table 5 Mean and variance values 25
Table 6 Results discussed in each domain 27
參考文獻 Arellano, D., Stark T.D., “Importance of three-dimensional slope stability analysis in practice”, Slope Stability 2000, GSP no. 101, D.V. Griffiths et al. (eds.), ASCE, pp. 18-32, 2000.
Chen, Z., Shao C., "Evaluation of minimum factor of safety in slope stability analysis", Canadian Geotechnical Journal, pp. 735-748, 1989.
Cheng, Y. "Location of critical failure surface and some further studies on slope stability analysis", Computers and Geotechnics, Vol. 30, No. 3, pp. 255-267, 2003
Cheng, Y., "Global optimization analysis of slope stability by simulated annealing with dynamic bounds and Dirac function", Engineering Optimization, Vol. 39, No. 1, pp. 17-32, 2007.
Cheng, Y., Lansivaara T., Wei W., "Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods", Computers and Geotechnics, Vol. 34, No. 3, pp. 137-150, 2007a.
Cheng, Y., Li L., Chi S., Wei W., "Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis," Computers and Geotechnics, Vol. 34, No. 2, pp. 92-103, 2007c.
Cheng, Y., "An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis”, Engineering Optimization, Vol. 40, No. 2, pp. 95-115, 2008a

Deutsch, C. V., Journel, A. G., GSLIB: geostatistical Software Library and User’s Guide, Second Edition, Oxford University Press, New York, 1997.
Ducan, J. M., “State of the Art: Limit equilibrium and Finite element analysis of slopes”, Journal of geotechnical Engineering, ASCE, Vol. 122, No. 7, pp. 577-596, 1996.
Ducan, J. M., “Factors of safety and reliability in geotechnical engineering”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 6, pp. 307-316, 2000.
Srivastavaa A., Sivakumar, B.G.L., Haldar, S., “Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis”, Journal of Engineering Geology, Vol. 110, pp. 93-101, 2010.
Elkateb, T., Chalaturnyk, R., Robertson, P. K., “An overview of soil heterogeneity: quantification and implications on geotechnical field problems”, Canadian Geotechnical Journal, Vol. 40, pp. 1-15, 2002.
El-Ramly, H., Morgenstern, N.R. & Cruden, D.M., “Probabilistic slope stability analysis for practice”, Canadian Geotechnical Journal, Vol. 39, No. 3, pp. 665-683, 2002.
El-Ramly, H., Morgenstern, N.R. and Cruden, D.M., “Probabilistic Stability Analysis of a Tailings Dyke on Pre-Sheared Clay-Shale”, Canadian Geotechnical Journal, Vol. 40, No. 1, pp. 192–208, 2003.
El-Ramly, H., Morgenstern, N.R. and Cruden, D.M., “Probabilistic Assessment of Stability of a Cut Slope in Residual Soil”, Geotechnique, Vol. 55, No. 1, pp. 77–84, 2005.
Farzanch O., Askari F., “Three-dimensional analysis of nonhomogeneous slopes”, Journal of Geotechnical and Geoenvironmental Engineering, Vol, 129, No. 2, pp. 137-145, 2003.
Fenton, G.A., “Simulation and analysis of random field”, PhD thesis, Princeton Univ., Princeton, N.J, 1990.
Fenton, G.A., “Error evaluation of three random field generators”, Journal of Engineering Mechanics, ASCE, Vol. 120, No. 12, pp. 2478-2496, 1994.
Fenton, G.A., Griffiths, D.V., “Risk assessment in geotechnical engineering”, John Wiley & Sons, 2008.
Griffiths, D. V., Lane, P. A., "Slope Stability analysis by finite elements", Geotechnique, Vol. 49, No. 3, pp. 387-403, 1999.
Griffiths, D.V., and Fenton, G.A., “Probabilistic slope stability analysis by finite elements”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 5, pp. 507-518, 2004.
Griffiths D.V., Schiermeyer R. P., Huang J., “Influence of anisotropy and rotation on probabilistic slope stability analysis by RFEM”, 2009.
Hicks, M. A. and C. Onisiphorou, “Stochastic evaluation of static liquefaction in a predominantly dilative sand fill”, Geotechniques, Vol. 55, No. 2, pp. 123–133, 2005.
Hicks, M. A. and Samy K., “Influence of anisotropic spatial variability on slope reliability”, In G. N. Pande and S. Piettruszczak, editors, Proc.: 8th International Symposium on Numerical Models in Geomechanics (NUMOG), Rome, Italy, pp. 535–539, 2002a.
Hicks, M. A. and Samy K., “Influence of heterogeneity on undrained clay slope stability”, Quarterly Journal of Engineering Geology and Hydrology, Vol. 35, No. 1, pp. 41–49, 2002b.
Hicks, M. A. and Samy K., “Reliability-based characteristic values: A stochastic approach to Eurocode 7”, Ground Engineering, Vol. 35, No. 12, pp. 30–34, 2002c.
Hicks, M. A., and Samy K., “Stochastic evaluation of heterogeneous slope stability”, Italian Geotechnical Journal, Vol. 38, No. 2, pp. 54–66, 2004.
Hicks, M. A. and Spencer, W. A., “Influence of heterogeneity on the reliability and failure of a long 3D slope”, Computers and Geotechnics, Vol. 37, No. 7–8, pp. 948–955, 2010.
Hu Bin, et al., “Development of Pre-Processing Package for FLAC3D and Verification of Its Simulating Effects”, Chinese Journal of Rock Mechanics and Engineering, Vol.21 No.9, Sept., 2002, pp. 1387-1391.
Imai, K., Frangopol, D.M., “Geometrically nonlinear finite element reliability analysis of structural systems”, i: theory, ii: applications. Computers and Structures, Vol. 77, No. 6, pp. 677-709, 2000.
ITASCA, FLAC3D (Fast Lagrangian Analysis of Continua) version 5.0: Fluid-Mechanical Interaction, Itasca Consulting group, Minneapolis, MN, USA, 2012.
John H. C., Daniel M. T., The Handbook of Groundwater Engineering, 2016.
Kazada, I., “Finite element techniques in groundwater flow studies: with applications in hydraulic and geotechnical engineering”, Dep. Civil Engineering, Czech Technical Univ., Prague, Czechoslovakia, 1990.
Kim, J., Sitar, N., “Importance of spatial and temporal variability in the analysis of seismically-induced slope deformation”, In: Proceedings of 9th International Conference on Applications of Statistics and Probability in Civil Engineering, Millpress Science, San Francisco, 2003.
Lloret-Cabot, M., Hicks, M. A., and Nuttall J. D., “Investigating the Scales of Fluctuation of an Artificial Sand Island”, In Proceedings of the International Conference, Geotechnical Installations in Geotechnical Engineering 2013, Rotterdam, edited by M. A. Hicks, J. Dijkstra, M. Lloret-Cabot, and M. Karstunen, 192–197, Rotterdam: CRC Press Taylor and Francis Group, 2013.
Lloret-Cabot, M., Hicks, M. A., and van den Eijnden, A. P., “Investigation of the Reduction in Uncertainty Due to Soil Variability When Conditioning a Random Field Using Kriging”, Geotechnique letters, Vol. 2, No. 3, pp. 123–127, 2012.
Li S.G., Liao, H.S., Ni, C.F., “Stochastic modeling of complex nonstationary groundwater systems”, Advances in Water Resources, Vol. 27, pp. 1087-1104, 2004.
Li, S. G., Liu, Q., “Interactive Ground Water (IGW): An Innovative Digital Laboratory for Groundwater Education and Research”, Computer Applications in Engineering Education, Vol. 11, No. 4, 2004.
Li Gen, Zhao Na, “Technology of Complex Model to FLAC3D with ANSYS Platform “, Journal of Liaoning Technical University (Natural Science), Vol.27 Supp.1, May, 2008, pp. 101-103.
Liao Qiulin,, “Automatic Model Generation of Complex Geologic Body with FLAC3D Baded on ANSYS Platform”, Chinese Journal of Rock Mechanics and Engineering, Vol. 24, No. 6, March, 2005, pp. 1010-1013.
Li Zhongkui, Dai Rong, Jiang Yiming, “Improvement of the Generation of the Initial Stress Field by Using FLAC3D and Application in A Huge Underground Cavern Group”, Chinese Journal of Rock Mechanics and Engineering, Vol. 21, No. 2, pp. 2387– 2392, 2002
Mostyn, G.S., Li, K.S., “Probabilistic slope stability – State of play”, In Probabilistic Method in Geotechnical Engineering: Proceedings of the conference, Edited by Li, K.S. and Lo, S-C.R., Pub. A.A. Balkema, pp. 89-110, 1993.
Muhanna, R. L., Zhang H., Mullen, R. L., “Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering”, Reliable Computing, Vol. 13, No. 2, pp. 173–194, 2007.
Nasekhian, A., “Application of Non-probabilistic and Probabilistic Concepts in Finite Element Analysis of Tunnelling”, Institute for Soil Mechanics and Foundation Engineering, Graz University of Technology, Dissertation, 2011.
Ni, C.F., Li, S.G., Liu, C.J., “Efficient conceptual framework to quantify flow uncertainty in large-scale highly nonstationary groundwater systems”, Journal of Hydrology, Vol. 381, pp. 297-307, 2010.
Ni, C.F., Lin, C.P., Li, S.G., “Efficient approximate spectral method to delineate stochastic well capture zones in nonstationary groundwater flow systems”, Journal of Hydrology, Vol. 407, pp. 184-195, 2011.
Nuttall, J.D., “Parallel Implementation and Application of the Random Finite Element Method”, PhD Thesis, University of Manchester, UK, 2011.
Olsson, A.M.J., Sandberg, G.E., “Latin Hypercube sampling for stochastic finite element analysis”, Journal of Engineering Mechanics, Vol. 128, No. 1, pp. 121-125, 2002.
Peschl, G.M., “Reliability analyses in geotechnics with the random set finite element method”, Institute for Soil Mechanics and Foundation Engineering, Graz University of Technology, Dissertation, 2004.
Rohaninejad M., Zarghami M., “Combining Monte Carlo and Finite Difference Methods for Effective Simulation of Dam Behavior”, Advances in Engineering Software, Vol. 45, pp. 197–202, 2012.
Rocscience Inc., Slide v5.0 – Two-Dimensional Limit-Equilibrium Analysis of Soil and Rock Slopes, 2003.
Rocscience Inc., RocData v3.0, Program for analyzing rock and soil mass strength, 2003.
Schwartz, F. W., Zhang, H., Fundamentals of Ground Water, John Wiley & Sons, Inc. New York, NY, 2003.
Schweiger, H.F., Peschl, G.M., “Reliability analysis in geotechnics with the random set finite element method”, Computers and Geotechnics, Vol. 32, pp. 422–435, 2005.
Schweiger, H.F., Peschl, G.M., Basic Concepts and Applications of Random Sets in Geotechnical Engineering, Book Series CISM International Centre for Mechanical Sciences, (eds.) D.V. Griffiths & G.A. Fenton Vol. 491, pp. 113-126, 2007.
Smith, L., Freeze, R. A., “Stochastic analysis of steady state groundwater flow in a bounded domain. 1. One-dimensional simulations” Water Resour. Res., Vol. 15, No. 3, pp. 521-528, 1979
Smith, L., Freeze, R. A., “Stochastic analysis of steady state groundwater flow in a bounded domain. 1. two-dimensional simulations.” Water Resour. Res., Vol. 15, No. 6, pp. 1543-1559, 1979.
Suchomel, R., Mašin, D., “Comparison of different probabilistic methods for predicting stability of a slope in spatially variable of soil”, Computer and Geotechnics, Vol. 37, No. 1-2, pp. 132–140, 2010.
Schweiger, H. F., Thurner, R., and Pöttler, R., “Reliability analysis in geotechnics with deterministic finite elements-theoretical concepts and practical application”, The International Journal of Geomechanics, Vol. 1, No. 4, pp. 389-413, 2001.
Stead, D., et al., “Advanced numerical techniques in rock slope stability analysis-application and limitations”, In: Proc. Of International Conference on Landslides Causes, Impacts and Countermeasures, pp. 615-624, 2001.
Sudret, B., Der Kiureghian, A., “Comparison of finite element reliability methods”, Probabilistic Engineering Mechanics, Vol. 17, No. 4, pp. 337-348, 2002.
Thurner, R., Schweiger, H.F., “Reliability analysis for geotechnical problems via finite elements - a practical application”, In Proceedings of GeoEng2000, Melbourne, Technomic Publishing, Lancaster, Vol. CD 20, 2002.
Tonon, F., Bernardini, A., Mammino, A., “Determination of parameters range in rock engineering by means of Random Ret Theory”, Reliability Engineering & System Safety, Vol. 70, No. 3, 241-261, 2000a.
Tonon, F., Bernardini, A., Mammino, A., “Reliability analysis of rock mass response by means of Random Set Theory”, Reliability Engineering & System Safety, Vol. 70, No. 3, 263-282, 2000b.
Zhang Y., et al., “Effects of geometries on three-dimensional slope stability”, Canadian Geotechnical Journal, Vol. 50, No. 3, pp. 233-249, 2013a.
Zoorabadi, M., “Probabilistic stability analysis of rock slopes”, Master thesis, Tarbiat Modares University, Iran, 2004.
White, W., “Soil variability: characterization and modelling.” Proc., Conf. Probabilistic Methods in Geotech. Engrg., K.S. Li and S. –C. R. Lo, eds., A. A. Balkema, Rotterdam, The Netherland, pp. 111-120, 1993.
Wolff, T.F., “Probabilistic slope stability in theory and practice”, Proceeding Paper Part of: In Uncertainty in the Geologic Environment, ASCE, New York, pp. 419-433, 1996.
Wong, S. Y., “Stochastic characterisation and reliability of saturated soils”, PhD thesis, University of Manchester, UK, 2004.
Wu, W., et al., “Investigation on stability of landfill slopes in seismically active regions in Central Asia”, In: 10th International Symposium on Landslides and Engineered Slopes, pp. 1475-1480, 2008.
Xu, B., Low, B. K., “Probabilistic Stability Analyses of Embankments Based on Finite-Element Method”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 11, pp. 1444-1454, 2006.
Vanmarcke, E. H., Random fields: analysis and synthesis, MIT Press, Cambridge, MA, 1984.








指導教授 倪春發(Chuen-Fa Ni) 審核日期 2018-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明