博碩士論文 104624604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.138.175.180
姓名 阮氏鳳(Nguyen Thi Phuong)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 楔型滑動擬動態與動態分析-由剛性至變形塊體假設
(Static and dynamic analysis of earthquake-triggered wedge failure – from rigid to deformable wedge)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 楔型破壞為常見之岩坡破壞模式。Hoek and Bray 於1974年提出剛性楔塊假設(剛塊法),透過忽略垂直兩不連續面交線方向剪力,即可順利進行擬靜態或動態穩定分析。然而像大光包這類地震誘發超大型楔塊滑動之案例,垂直兩不連續面交線方向剪力即無法忽略不計。Lee於1989提出最大剪應力法,假設垂直兩不連續面交線方向剪應力達到兩不連續面之剪力強度。上述兩分析法恰為楔型塊體安全係數之上限與下限。本研究提出一變形指數( )以反應楔形塊體變形性對垂直兩不連續面交線方向剪應力之大小,並計算剛塊法( =0)與最大剪應力法( =1)之安全係數。結果發現變形指數 對安全係數影響很明顯,因此,對於大型岩楔穩定性分析,應考慮岩楔內部構造與變形性對整體岩楔滑動穩定性之影響。
地震誘發岩楔破壞,可透過Newmark位移分析法(NDA)引入速度位移相依摩擦律計算永久位移量,兩不連續面之摩擦係數將隨地震造成岩楔沿交線向量產生之位移量與滑動速度不斷改變。本研究考慮了慣性力之影響,並考慮不連續面強度異向性(SAR:垂直交線向量與平行交線向量強度比)。結果發現雖然考慮慣性力與否對結果影響不算巨大,但是考慮慣性力推導之臨界加速度才是正確的。另外,剪力強度異向性將明顯影響永久位移之分析結果,因此,不連續面強度異向性應於NDA分析時加以考慮。
本文利用大光包山崩之層間斷層泥進行旋剪試驗,將試體浸泡於水中為了使其狀態接近現地。以正向應力為1至3 MPa與等價速度介於0.001 至 1.3 m/s完成了19組旋剪試驗,摩擦行為於 0.3 m/s以下呈現滑移強化、於0.3 m/s以上則呈現滑移弱化,尖峰與穩態摩擦係數分別為0.41~ 0.81與0.12~0.63。以大光包山崩案例利用NDA引入速度位移相依摩擦律進行分析,結果顯示,當 增加表示變形性提高時,滑移速度與位移量也會逐漸增加。探討不同剪切強度折減(SRR,範圍0到1)在兩個破壞面上不同方向的影響,結果顯示,在大光包山崩案例中當SRR從0增加至1,永久位移約增加10倍(從數公分至數十公分)。由於不同方向上的滑移速度與位移相當不同,因此不同方向上的強度折減需要被考慮於分析中。
摘要(英) Wedge failure is one of the common slope failures which can be triggered by an earthquake. Hoek and Bray (1974) proposed Rigid Wedge Method (RWM), a method suited for small rock wedges, that assumes the wedge as a rigid body and ignores the shear stresses on two discontinuities to calculate driving and resisting forces under pseudo-static state and seismic load. When rockslide is massive such as Daguangbao landslide, the shear stresses must be taken into account due to rock mass deformation. Lee (1989) proposed Maximum Shear Stress Method (MSSM) that considers the shear stresses as the shear strengths of two discontinuities. The results of these two methods represent separately the lower and upper bounds of the wedge stability. This study proposes a rigid-deformable index ( ) which is substituted from 0 to 1 to calculate the factor of safety ( ) from RWM to MSSM. The results show a significant influence of rigid-deformable index on the stability of rock wedge. Therefore, the influence of internal structures which dominates the deformability of rock wedge should be carefully evaluated.
Moreover, this study using the Newmark Displacement Analysis (NDA) with velocity-displacement ( ) dependent friction law, to simulate the variation of friction coefficient on two discontinuities of rock wedge with varied sliding velocity and displacement during earthquake. This study considers the inertial forces exert on the wedges during earthquake and evaluates the influence of shear strength reduction along different directions. The results show that considering the inertial force is necessary, although the permanent displacement is only slightly different if we neglecting this effect. The shear strength anisotropy ratio ( ), which is the ratio of friction coefficients perpendicular and parallel to intersection line (I-line) of wedge, is significantly influence the permanent displacement. That is, the strength anisotropy of the discontinuities along different directions should be considered.
Rotary shear tests are performed in this study using the bedding parallel fault gouges of Daguangbao landslide which is an atypical wedge failure. The sample assemblages are immersed in the water to simulate the possible in-situ condition. A series of 19 experiments under 1 to 3 MPa and range from 0.001 to 1.3 m/s of the equivalent slip velocity ( ) were performed. The frictional behaviors exhibits an obvious slip-strengthening behavior when range from 0.001 to 0.3 m/s and illustrate the slip weakening characteristic at m/s, respectively. The peak and steady-state friction coefficients range from 0.41 to 0.81 and 0.12 to 0.63, separately.
Using NDA with dependent friction law, the analysis results of Daguangbao landslide exhibited that with increasing the rigid-deformable index ( ), the velocity and accumulated displacement rise up gradually, that is because of considering a different in deformable level in both weak planes of wedge failure. To study the influence of different shear strength reduction in both discontinuities along different direction, the strength reduction ratio ( ) is proposed in this study with its value range from 0 to 1. The analysis result shows that in the case of Daguangbao landslide, when the increased from 0 to 1, the permanent displacement increased about ten times (from several center meters to several tens of center meters). That is, the different strength reduction along different directions should be considered for the sliding displacements and velocities are quite different along different directions.
關鍵字(中) ★ 地震誘發楔型破壞
★ 大光包山崩
★ 變形指數
★ 強度異向性
★ 強度折減比
★ 旋剪試驗
★ 速度位移相依摩擦律
★ Newmark位移分析
關鍵字(英) ★ Earthquake-triggered wedge failure
★ Daguangbao landslide
★ rigid-deformable index
★ strength anisotropy ratio
★ strength reduction ratio
★ rotary shear test
★ velocity-displacement dependent friction law
★ Newmark displacement analysis
論文目次 ABSTRACT i
摘要 iv
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xiii
LIST OF ABBREVATIONS xiv
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: LITERTURE REVIEWS 7
2.1. The stability analysis of rock wedge 7
2.1.1. Rigid wedge method (RWM) 8
2.1.2. Maximum shear stress method (MSSM) 9
2.2. Newmark displacement analysis (NDA) 11
2.3. Velocity-displacement dependent friction law (VDFL) 14
2.4. Previous research of NDA with VDFL 17
2.5. Review of Daguangbao landslide (DGB) 18
CHAPTER 3: METHODOLOGY 21
3.1. Derivation of rigid to deformable wedge model. 21
3.1.1. Rigid-deformable index ( ) 21
3.1.2. Strength anisotropy ratio ( ) 23
3.1.3. Strength reduction ratio ( ) 24
3.2 Rotary shear tests 25
3.3. Newmark displacement analysis with dependent friction law 33
CHAPTER 4: RESULTS 37
4.1. Stability analysis from rigid to deformable wedge 37
4.1.1. Influence of rigid-deformable index ( ) on the factor of safety ( ) 37
4.1.2. Influence of shear resistance ratio ( ) on the factor of safety ( ) . 41
4.2. Rotary shear tests of Daguangbao landslide 45
4.2.1. Consolidation curves 45
4.2.2. Frictional behaviors of gouge assemblages 46
4.3. The influence of rigid-deformable index ( ) on the results of Newmark displacement analysis (NDA) 59
4.4. The influence of strength reduction ratio ( ) on the results of Newmark displacement analysis (NDA) 64
CHAPTER 5: DISCUSSION 69
5.1. Stability analysis from rigid to deformable wedge model 69
5.2. Rotary shear experiments 70
5.3. Newmark displacement analysis of Daguangbao landslide 73
CONCLUSIONS 78
REFERENCES 80
APPENDIX 1 90
APPENDIX 2 91
APPENDIX 3 99
APPENDIX 4 109
APPENDIX 5 112
參考文獻 Allstadt, K., Vidale, J.E., Frankel, A.D., 2013. A scenario study of seismically induced landsliding in Seattle using broadband synthetic seismograms. Bulletin of the Seismological Society of America 103(6), 2971–2992.
ASTM, 2004. Standard test method for direct shear test of soils under consolidated drained conditions. D3080.
Aydan, Ö., Kumsar, H., 2010. An experimental and theoretical approach on the modeling of sliding response of rock wedges under dynamic loading. Rock Mechanics and Rock Engineering 43(6), 821–830.
Brady, B.H.G., Brown, E.T., 2006. Rock mechanics: for underground mining (3rd edition). Springer Science & Business Media, 628p.
Chen ZY., 2004. A generalized solution for tetrahedral rock wedge stability analysis. International Journal of Rock Mechanics and Mining Sciences, 41: 613–628.
Cheng, H.Y., 2015. Newmark displacement analysis for earthquake-triggered wedge failure – giant wedge failure of Daguangbao landslide. National Central University, Master thesis, 101p. (in Chinese)
Chiu, H.C.,1997. Stable baseline correction of digital strong-motion data. Bulletin of the Seismological Society of America, Vol. 87, No. 4, 932-944.
Cui, S., Pei, X., Huang, R., 2017. Effects of geological and tectonic characteristics on the earth quake-triggered Daguangbao landslide, China. Journal of the International Consortium on Landslides, DOI 10.1007/s 10346–017–0899–3.
De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Togo, T., Shimamoto, T., 2011. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 39(1), 35–38.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature 471, 494–498.
Dong, J.J., Lee, W.R., Lin, M.L., Huang, A. B., Lee, Y. L., 2009. Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake. Tectonophysics 466(3), 438–457.
Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., De Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research: Solid Earth 116, B09208.
Franklin, A.G., Chang, R.K., 1977. Permanent displacement of earth embankments by Nemark’s sliding block analysis. Report 5, Miscellaneous Paper S71–17. U.S. Army Corps of Engineers. Waterways Eperiment Station, Vicksburg, MS.
French, M.E., Kitajima, H., Chester, J.S., Hirose, T., 2014. Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andres Fault. Geophysical Research of Soild Earth, 119, 1777–1802.
Ghosh, A., Haupt, W., 1989. Computation of the Seismic Stability of Rock Wedges. Rock Mechanics and Rock Engineering 22, 109–125.
Gischig, V.S., Eberhardt, E., Moore, J.R., Hungr, O., 2015. On the seismic response of deep-seated rock slope instabilities—Insights from numerical modeling. Engineering Geology 193, 1–18.
Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth 110(B5).
Hoek, E., Bray, J.W., 1974. Rock Slope Engineering. London: Institution of Mining & Metallurgy, 309p.
Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R.W., 2001. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological of America 91, 953–958.
Huang, R.Q., Pei, X.J., Zhang, W.F., Li, S.G., Li, B.L., 2009. Further examination on characteristics and formation mechanism of Daguangbao landslide. Journal of Engineering Geology (In Chinese) 17(6), 725–736.
Huang, R., Pei, X., Fan, X., Zhang, W., Li, S., Li, B., 2012. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides 9(1), 131–142.
Huang, R., Zhang, W., Pei, X., 2014. Engineering geological study on Daguangbao landslide. Journal of Engineering Geology 22(4), 557–585.
Jiang, J.C., Yamagami, T., 2006. Charts of estimating strength parameters from slips in homogeneous slopes. Computer and Geotechnics, 33, 294–304.
Jiang, J.C., Nakano, S., 2013. A comparison of predicted and observed slope failures due to the 2004 Niigata-Ken Chuetsu earthquake. Earthquake-induced landslides. Springer, Berlin, Heidelberg, 791-797.
Jiang, Q., Liu, X., Wei, W., Zhou, C., 2013. A new method for analyzing the stability of rock wedges. International Journal of Rock Mechanics and Mining Sciences, 60, 413–422.
Jibson, R.W., 1985. Predicting earthquake-induced landslide displacements using Newmark′s sliding block analysis. Transportation Research Record 1411, 9–17.
Jibson, R.W., Keefer, D.K., 1993. Analysis of the seismic origin of landslides: examples from the New Madrid seismic zone. Geological Society of America Bulletin 105, 521–536.
Jibson, R.W., Harp, E.L., Michael, J A., 1998. A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California, area. US Geological Survey. Open-File Report 98–113. 17 p.
Jibson, R.W., Harp, E.L., Michael, J.A., 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58(3), 271–289.
Kitajima, H., Chester, F.M., Shimamoto, T., 2010. High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Geophysical Research, 115, B08408.
Kumsar, H., Aydan, Ö., Ulusay, R., 2000. Dynamic and static stability assessment of rock slopes against wedge failures. Rock Mechanics and Rock Engineering 33(1), 31–51.
Kramer, S.L., Lindwall, N.W., 2004. Dimensionality and directionality effects in Newmark sliding block analyses. Journal of Geotechnical and Environmental Engineering, 130, 303–315.
Lee, C.T., 1989. Sensibility analysis of rock wedge stability. Technical Applied of Engineering Geology Workshop, Taiwan, 315–343. (in Chinese)
Li, Y.W., 2017. Relationship of frictional characteristics of kaolin clay in different slip rates and drainage conditions. National Central University, Master thesis. (in Chinese)
Makdisi, F.I., Seed, H.B., 1978. Simplified procedure for estimating dam and embankment earthquake-induced deformations. Geotechinical and Geoenvironmental Engineering, 104, 849–867.
Miles, S.B., Keefer, D.K., 2000. Evaluation of seismic slope-performance models using s regional case study. Environmental and Engineering Geosxience VI (1), 25–39.
Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T., 2009. Dynamic weakening of bedding-parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake. The next generation of Research on Earthquake-induced landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi earthquake, 398–401.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letter, 34, L01308.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama E., 2009. High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics 471(3), 285–296.
Munwar, B.B., Sivakumar, B.G.L., 2008. Computation of sliding displacements of bridge abutments by pseudo-dynamic method. Soil dynamics and Earthquake Engineering, 29, 103–120.
Newmark, N.M., 1965. Effects of earthquakes on dams and embankments. Geotechnique 15, 139–159.
Nielsen, S., Di Toro, G., Hirose, T., and Shimamoto, T., 2008. Frictional melt and seismic slip. Journal of Geophysical Research: Solid Earth 113(B1), B01308.
Park, H., West, T.R., 2001. Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59, 233–251.
Pradel, D., Smith, P. M., Stewart, J. P., Raad, G., 2005. Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131(11), 1360–1369.
Romeo, R., 2000. Seismically induced landslide displacements: a predictive model. Engineering Geology, 58(3), 337–351.
Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake, Earth, Planets and Space, 66:65. doi:10.1186/1880–5981–66–65.
Shimamoto, T., Tsutsumi, A., 1994. A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Tectonic Research Group of Japan, 39, 65–78.
Schulz, W. H., Wang, G., 2014. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake‐induced ground motion: Implications for coastal Oregon, US. Journal of Geophysical Research: Earth Surface 119(7), 1617–1635.
Sone, H. Shimamoto, T., 2009. Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience 2(10), 705–708.
Terzaghi, K., 1950. Mechanisms of landslides, engineering geology (Berdey) volume. Geological Society of America, 83–123.
Togo, T., Ma, S., Hirose, T., 2011. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop, Sichuan, China and its applications for dynamic weakening of fault during thr 2008 Wenchuan earthquake. Earthquake Science, 24, 267–281.
Togo, T., Shimamoto, T., Dong, J.J., Lee, C.T., Yang, C.M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi-Chi earthquake, as revealed by high-velocity friction experiments. Geophysical Research Letters 41(6), 1907–1915.
Togo, T., Yao, L., Ma, S., Shimamoto, T., 2016. High-velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD-1 drill hole. Journal of Geophysical Research: Solid Earth, 121, 5328–5348.
Tsao, C.C., 2014. The geometric characteristics and initiation mechanisms of the earthquake-triggered Daguangbao landslide. National Central University, Master Thesis, 151p.
Wang, K.L., Lin, M.L., 2010. Development of shallow landslide potential map based on Newmark’s displacement: the case study of Chi-Chi earthquake, Taiwan. Environmental Earth Science, 60, 775–785.
Wang, Y.F., Dong, J.J., Cheng, Q.G. 2017. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? Journal of Geophysical Research: Solid Earth, 122, 1648–1676.
Wartman, J., Bray, J.D., Seed, R.B., 2003. Inclined plane studies of the Newmark sliding block procedure. Journal of Geotechnical and Environmental Engineering 129, 678–684.
Wilson, R.C., Keefer, D.K., 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73(3), 863–877.
Wieczorek, G.F., Wilson, R.C., Harp, E.L., 1985. Map showing slope stability during earthquakes in San Mateo County, California (No. 1257–E).
Wu, J.H., Tsai, P.H., 2011. New dynamic procedure for back-calculating the shear strength parameters of large landslides. Engineering Geology 123(1), 129–147.
Xu, X., Li, S., Wang, X., Wang, L., Zhang, J., Zhu, L., Shen, M., 2013. Characteristics of formation mechanism and kinematics of Daguangbao landslide caused by Wenchuan earthquake, Sichuan, China. Journal of Engineering Geology 21(2), 269–281.
Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide - What can we learn from a simple rigid block model and a velocity- displacement dependent friction law? Engineering Geology 182, 158–181.
Yao, L., Ma, S., Shimamoto, T., Togo, T., 2013. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophysics, 599, 135–156.
Yegian, M.K., Marclano, E.A., Ghahraman, V.G., 1991. Earthquake-induced permanent deformation: Probabilistic approach. Geotechnical Engineering, 117, 35–50.
Yeung, MR., Jiang, QH., Sun, N., 2003. Variation of block theory and three-dimensional discontinuous deformation analysis as wedge stability analysis methods. International Journal of Rock Mechanics and Minning Science, 40: 265–275.
Zhang, Y., Chen, G., Zheng, L., Li, Y., Wu, J., 2013. Effect of near-fault seismic loadings on run-out of large-scale landslide: a case study. Engineering Geology, 167(11), 37–58.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明