參考文獻 |
References
1. Whisker, V., et al. Using immersive virtual environments to develop and visualize construction
schedules for advanced nuclear power plants. in Proceedings of ICAPP. 2003.
2. Akinci, B., M. Fischer, and J. Kunz, Automated generation of workspaces required by
construction activities. Journal of Construction Engineering and Management-ASCE, 2002.
128(4): p. 306-315.
3. Coles, B.C. and K.F. Reinschmidt, Computer-integrated construction. Civil Engineering, 1994.
64(6): p. 50.
4. Jupp, J., 4D BIM for Environmental Planning and Management. Procedia Engineering, 2017.
180: p. 190-201.
5. Volk, R., J. Stengel, and F. Schultmann, Building Information Modeling (BIM) for existing
buildings— a Literature review and future needs. Automation in construction, 2014. 38: p.
109-127.
6. Ding, L., Y. Zhou, and B. Akinci, Building Information Modeling (BIM) application framework:
The process of expanding from 3D to computable nD. Automation in Construction, 2014. 46:
p. 82-93.
7. Hartmann, T. and M. Fischer, Supporting the constructability review with 3D/4D models.
Building Research & Information, 2007. 35(1): p. 70-80.
8. Fischer, M. and K. Calvin, PM4D final report. 2002: CIFE.
9. Haymaker, J. and M. Fischer, Challenges and benefits of 4D modeling on the Walt Disney
Concert Hall Project. Center for Integrated Facility Engineering, Stanford University, 2001.
10. Zhou, Y., L.Y. Ding, and L.J. Chen, Application of 4D visualization technology for safety
management in metro construction. Automation in Construction, 2013. 34: p. 25-36.
11. Park, J., et al., 3D/4D CAD Applicability for Life-Cycle Facility Management. Journal of
Computing in Civil Engineering, 2011. 25(2): p. 129-138.
12. GUDGEL, J., The business value of BIM: Getting Building Information Modeling to the bottom
Line" McGraw-Hill SmartMarket Report. 2009.
13. Gledson, B. and D. Greenwood, Surveying the extent and use of 4D BIM in the UK. Journal of
Information Technology in Construction (ITcon), 2016. 21: p. 57-71.
14. Barrett, P., Construction Management Pull for 4D CAD, in Construction Congress VI. 2000
Orlando, Florida, United States.
15. Hartmann, T., J. Gao, and M. Fischer, Areas of application for 3D and 4D models on
construction projects. Journal of Construction Engineering and Management-ASCE, 2008.
134(10): p. 776-785.
16. Mahalingam, A., R. Kashyap, and C. Mahajan, An evaluation of the applicability of 4D CAD on
construction projects. Automation in Construction, 2010. 19(2): p. 148-159.
62
17. Ding, L.Y., Y. Zhou, and B. Akinci, Building Information Modeling (BIM) application
framework: The process of expanding from 3D to computable nD. Automation in
Construction, 2014. 46: p. 82-93.
18. Azhar, S., Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the
AEC Industry. Leadership and Management in Engineering, 2011. 11(3): p. 241-252.
19. Kam, M.F.a.C., PM4D Final Report
CIFE Technical Report Number 143. 2002.
20. Santos, R., A.A. Costa, and A. Grilo, Bibliometric analysis and review of Building Information
Modelling literature published between 2005 and 2015. Automation in Construction, 2017.
80: p. 118-136.
21. Yalcinkaya, M. and V. Singh, Patterns and trends in building information modeling (BIM)
research: A latent semantic analysis. Automation in construction, 2015. 59: p. 68-80.
22. Heesom, D. and L. Mahdjoubi, Trends of 4D CAD applications for construction planning.
Construction Management and Economics, 2004. 22(2): p. 171-182.
23. Koo, B. and M. Fischer, Feasibility Study of 4D CAD in Commercial Construction. Journal of
Construction Engineering and Management, 2000. 126(4): p. 251-260.
24. Dang, T. and H.J. Bargstadt, 4D Relationships: The Missing Link in 4D Scheduling. Journal of
Construction Engineering and Management, 2016. 142(2): p. 16.
25. Dengenis, S., White Paper - 4D Construction Scheduling Software. October 2015.
26. Sheppard, L.M., Virtual building for construction projects. IEEE Computer Graphics and
Applications, 2004. 24(1): p. 6-12.
27. Mallasi, Z., Dynamic quantification and analysis of the construction workspace congestion
utilising 4D visualisation. Automation in Construction, 2006. 15(5): p. 640-655.
28. Rischmoller, L. and L.F. Alarcón. 4D-PS: Putting an IT new work process into effect. in
Proceedings of CIB w78 2002 Conference on Construction Information Technology. 2002.
29. Harun, Z. and G. Singh, Visual simulation of construction projects on a microcomputer.
Simulation Practice and Theory, 1994. 2(2): p. 77-90.
30. Research, D.C. 4D CAD Research Examples. Accessed August 7, 2002]. Available from:
https://web.stanford.edu/group/4D/examples/examples.shtml#mockup.
31. Liston, K., M. Fischer, and J. Kunz, Requirements and benefits of interactive information
workspaces in construction, in Computing in Civil and Building Engineering (2000). 2000. p.
1277-1284.
32. Songer, A.D., J.E. Diekmann, and D. Karet, Animation-based construction schedule review.
Construction innovation, 2001. 1(3): p. 181-190.
33. Liston, K., M. Fischer, and T. Winograd, Focused sharing of information for multidisciplinary
decision making by project teams. Journal of Information Technology in Construction (ITcon),
2003. 6(6): p. 69-82.
63
34. Liston, K.M., M. Fischer, and J. Kunz. 4-D Annotator: A Visual Decision Support Tool for
Construction Planners. in Computing in Civil Engineering. 1998. ASCE.
35. Liston, K., M. Fischer, and J. Kunz, Designing and evaluating visualization techniques for
construction planning, in Computing in Civil and Building Engineering (2000). 2000. p. 1293-
1300.
36. McKinney, K., et al. Interactive 4D-CAD. in Proceedings of the third Congress on Computing in
Civil Engineering. 1996. ASCE, Anaheim, CA, June.
37. Tanyer, A.M. and G. Aouad, Moving beyond the fourth dimension with an IFC-based single
project database. Automation in Construction, 2005. 14(1): p. 15-32.
38. Construction Management Pull for 4D CAD, in Construction Congress VI.
39. Aouad, G., A. Lee, and S. Wu, nD Modelling for Collaborative Working in Construction.
Architectural Engineering and Design Management, 2005. 1(1): p. 33-44.
40. Ihsan Faraj, M.A., A Modularised Integrated Computer Environment for the Construction
Industry: . Journal of Information Technology in Construction, November 1999.
41. Chau, K.W., M. Anson, and J.P. Zhang, 4D dynamic construction management and
visualization software: 1. Development. Automation in Construction, 2005. 14(4): p. 512-524.
42. Hartmann, T. and N. Vossebeld, A semiotic framework to understand how signs in
construction process simulations convey information. Advanced Engineering Informatics,
2013. 27(3): p. 378-385.
43. Wang, H.J., et al., 4D dynamic management for construction planning and resource
utilization. Automation in Construction, 2004. 13(5): p. 575-589.
44. Jongeling, R. and T. Olofsson, A method for planning of work-flow by combined use of
location-based scheduling and 4D CAD. Automation in Construction, 2007. 16(2): p. 189-198.
45. Russell, A., et al., Visualizing high-rise building construction strategies using linear scheduling
and 4D CAD. Automation in Construction, 2009. 18(2): p. 219-236.
46. Turkan, Y., et al., Automated progress tracking using 4D schedule and 3D sensing
technologies. Automation in Construction, 2012. 22: p. 414-421.
47. Feng, C.-W., Y.-J. Chen, and J.-R. Huang, Using the MD CAD model to develop the time–cost
integrated schedule for construction projects. Automation in Construction, 2010. 19(3): p.
347-356.
48. Wang, W.C., et al., Integrating building information models with construction process
simulations for project scheduling support. Automation in Construction, 2014. 37: p. 68-80.
49. Moon, H., N. Dawood, and L. Kang, Development of workspace conflict visualization system
using 4D object of work schedule. Advanced Engineering Informatics, 2014. 28(1): p. 50-65.
50. Eastman, C.M., et al., BIM handbook: A guide to building information modeling for owners,
managers, designers, engineers and contractors. 2011: John Wiley & Sons.
64
51. Goedert, J.D. and P. Meadati, Integrating Construction Process Documentation into Building
Information Modeling. Journal of Construction Engineering and Management, 2008. 134(7):
p. 509-516.
52. Goedert, J.D. and P. Meadati, Integrating construction process documentation into building
information modeling. Journal of Construction Engineering and Management-Asce, 2008.
134(7): p. 509-516.
53. Mills, F., What is 4D BIM 2016.
54. Büchmann-Slorup, R. and N. Andersson. BIM-based scheduling of Construction–A
comparative analysis of prevailing and BIM-based scheduling processes. in Proc., 27 th Int.
Conf. of the CIB W78. 2010.
55. Chau, K.W., M. Anson, and J.P. Zhang, Implementation of visualization as planning and
scheduling tool in construction. Building and Environment, 2003. 38(5): p. 713-719.
56. Tulke, J. and J. Hanff. 4D construction sequence planning–new process and data model. in
Proceedings of CIB-W78 24th International Conference on Information Technology in
Construction, Maribor, Slovenia. 2007.
57. Whyte, J., Virtual reality and the built environment. 2002: Routledge.
58. Whyte, J., Innovation and users: virtual reality in the construction sector. Construction
Management and Economics, 2003. 21(6): p. 565-572.
59. Webb, R.M., J. Smallwood, and T.C. Haupt, The potential of 4D CAD as a tool for construction
management. Journal of Construction Research, 2004. 5(01): p. 43-60.
60. Eastman, C., et al., Automatic rule-based checking of building designs. Automation in
construction, 2009. 18(8): p. 1011-1033.
61. Cerovsek, T., A review and outlook for a ‘Building Information Model’(BIM): A multistandpoint
framework for technological development. Advanced engineering informatics,
2011. 25(2): p. 224-244.
62. Skibniewski, M.J., Information technology applications in construction safety assurance.
Journal of Civil Engineering and Management, 2014. 20(6): p. 778-794.
63. Allen, C. and J. Smallwood, Improving construction planning through 4D planning. Journal of
Engineering, Design and Technology, 2008. 6(1): p. 7-20.
64. van Nederveen, G.A. and F.P. Tolman, Modelling multiple views on buildings. Automation in
Construction, 1992. 1(3): p. 215-224.
65. Mukherjee, K. and R. Clarke, 4D construction planning. Chemeca 2012: Quality of life through
chemical engineering: 23-26 September 2012, Wellington, New Zealand, 2012: p. 1443.
66. Akinci, B., et al., Representing work spaces generically in construction method models.
Journal of Construction Engineering and Management, 2002. 128(4): p. 296-305.
67. Akinci, B., et al., Formalization and automation of time-space conflict analysis. Journal of
Computing in Civil Engineering, 2002. 16(2): p. 124-134.
65
68. Winch, G.M. and S. North, Critical Space Analysis. Journal of Construction Engineering and
Management, 2006. 132(5): p. 473-481.
69. Choi, B., et al., Framework for Work-Space Planning Using Four-Dimensional BIM in
Construction Projects. Journal of Construction Engineering and Management, 2014. 140(9).
70. Dawood, N. and Z. Mallasi, Construction Workspace Planning: Assignment and Analysis
Utilizing 4D Visualization Technologies. Computer-Aided Civil and Infrastructure Engineering,
2006. 21(7): p. 498-513.
71. Tantisevi, K. and B. Akinci, Automated generation of workspace requirements of mobile crane
operations to support conflict detection. Automation in Construction, 2007. 16(3): p. 262-
276.
72. Bansal, V.K., Use of GIS and Topology in the Identification and Resolution of Space Conflicts.
Journal of Computing in Civil Engineering, 2011. 25(2): p. 159-171.
73. Koo, B., J. Kim, and J.I. Kim, An empirical study of MEP workspace modeling approaches for
4D model-based time-space conflict analyses: Case study on the international linear collider
project. Ksce Journal of Civil Engineering, 2013. 17(4): p. 627-637.
74. Moon, H., V.R. Kamat, and L. Kang, Grid Cell-based Algorithm for Workspace Overlapping
Analysis Considering Multiple Allocations of Construction Resources. Journal of Asian
Architecture and Building Engineering, 2014. 13(2): p. 341-348.
75. Chavada, R., N. Dawood, and M. Kassem, Construction workspace management: the
development and application of a novel nD planning approach and tool. Journal of
Information Technology in Construction, 2012.
76. Kassem, M., N. Dawood, and R. Chavada, Construction workspace management within an
Industry Foundation Class-Compliant 4D tool. Automation in Construction, 2015. 52: p. 42-58.
77. Cheng, J.C., J. Won, and M. Das. Construction and demolition waste management using BIM
technology. in International Group for Lean Construction Conference (IGLC), Perth, Australia.
2015.
78. Fard, M.G. and F. Peña-Mora, Application of visualization techniques for construction
progress monitoring, in Computing in Civil Engineering (2007). 2007. p. 216-223.
79. Kang, J.H., S.D. Anderson, and M.J. Clayton, Empirical study on the merit of web-based 4D
visualization in collaborative construction planning and scheduling. Journal of Construction
Engineering and Management, 2007. 133(6): p. 447-461.
80. Golparvar-Fard, M., et al., Visualization of Construction Progress Monitoring with 4D
Simulation Model Overlaid on Time-Lapsed Photographs. Journal of Computing in Civil
Engineering, 2009. 23(6): p. 391-404.
81. Benjaoran, V. and S. Bhokha, Enhancing visualization of 4D CAD model compared to
conventional methods. Engineering, Construction and Architectural Management, 2009.
16(4): p. 392-408.
82. Chen, Y.-H., et al., Selection and evaluation of color scheme for 4D construction models.
Journal of Information Technology in Construction (ITcon), 2013. 18(1): p. 1-19.
66
83. Chang, H.S., S.C. Kang, and P.H. Chen, Systematic procedure of determining an ideal color
scheme on 4D models. Advanced Engineering Informatics, 2009. 23(4): p. 463-473.
84. Zhou, W., et al., Model-Based Groupware Solution for Distributed Real-Time Collaborative 4D
Planning through Teamwork. Journal of Computing in Civil Engineering, 2012. 26(5): p. 597-
611.
85. Huhnt, W., et al., Data management for animation of construction processes. Advanced
Engineering Informatics, 2010. 24(4): p. 404-416.
86. Kamat, V.R., et al., Research in Visualization Techniques for Field Construction. Journal of
Construction Engineering and Management, 2011. 137(10): p. 853-862.
87. Liang, X.O., M. Lu, and J.P. Zhang, On-site visualization of building component erection
enabled by integration of four-dimensional modeling and automated surveying. Automation
in Construction, 2011. 20(3): p. 236-246.
88. Zanen, P.P.A., et al., Using 4D CAD to visualize the impacts of highway construction on the
public. Automation in Construction, 2013. 32: p. 136-144.
89. Boton, C., S. Kubicki, and G. Halin, Designing adapted visualization for collaborative 4D
applications. Automation in Construction, 2013. 36: p. 152-167.
90. Boton, C., S. Kubicki, and G. Halin, The Challenge of Level of Development in 4D/BIM
Simulation Across AEC Project Lifecycle. A Case Study. Procedia Engineering, 2015. 123: p. 59-
67.
91. Kang, L.S., et al., Improved link system between schedule data and 3D object in 4D CAD
system by using WBS code. Ksce Journal of Civil Engineering, 2010. 14(6): p. 803-814.
92. Cai, J.P.a.H., Automatic Construction Schedule Generation Method through BIM Model
Creation, in Computing in Civil Engineering 2015. 2015.
93. Nikolic, D., S. Jaruhar, and J.I. Messner, Educational Simulation in Construction: Virtual
Construction Simulator. Journal of Computing in Civil Engineering, 2011. 25(6): p. 421-429.
94. Song, S., J. Yang, and N. Kim, Development of a BIM-based structural framework optimization
and simulation system for building construction. Computers in Industry, 2012. 63(9): p. 895-
912.
95. Chen, S.M., et al., A framework for an automated and integrated project scheduling and
management system. Automation in Construction, 2013. 35: p. 89-110.
96. Moon, H., et al., Development of a schedule-workspace interference management system
simultaneously considering the overlap level of parallel schedules and workspaces.
Automation in Construction, 2014. 39: p. 93-105.
97. Faghihi, V., K.F. Reinschmidt, and J.H. Kang, Construction scheduling using Genetic Algorithm
based on Building Information Model. Expert Systems with Applications, 2014. 41(16): p.
7565-7578.
98. Kim, C., H. Son, and C. Kim, Automated construction progress measurement using a 4D
building information model and 3D data. Automation in Construction, 2013. 31: p. 75-82.
67
99. Kim, H.J., et al., Generating construction schedules through automatic data extraction using
open BIM (building information modeling) technology. Automation in Construction, 2013. 35:
p. 285-295.
100. Gelisen, G. and F.H. Griffis, Automated Productivity-Based Schedule Animation: Simulation-
Based Approach to Time-Cost Trade-Off Analysis. Journal of Construction Engineering and
Management, 2014. 140(4): p. 10.
101. Moon, H., et al., BIM-Based Construction Scheduling Method Using Optimization Theory for
Reducing Activity Overlaps. Journal of Computing in Civil Engineering, 2015. 29(3): p. 16.
102. LiJuan, C. and L. Hanbin, A BIM-based construction quality management model and its
applications. Automation in Construction, 2014. 46: p. 64-73.
103. Monica CHHATWANI, M.G.-F., Model-Driven Management a of Construction Carbon
Footprint: Case Study, in Construction Research Congress 2016. 2016.
104. Benjaoran, V. and S. Bhokha, An integrated safety management with construction
management using 4D CAD model. Safety Science, 2010. 48(3): p. 395-403.
105. Kiviniemi, M., et al., BIM-based safety management and communication for building
construction. VTT research notes, 2011. 2597.
106. Hu, Z. and J. Zhang, BIM-and 4D-based integrated solution of analysis and management for
conflicts and structural safety problems during construction: 2. Development and site trials.
Automation in Construction, 2011. 20(2): p. 167-180.
107. Zhang, J.P. and Z.Z. Hu, BIM- and 4D-based integrated solution of analysis and management
for conflicts and structural safety problems during construction: 1. Principles and
methodologies. Automation in Construction, 2011. 20(2): p. 155-166.
108. Zhou, W., J. Whyte, and R. Sacks, Construction safety and digital design: A review.
Automation in Construction, 2012. 22: p. 102-111.
109. Guo, H.L., H. Li, and V. Li, VP-based safety management in large-scale construction projects: A
conceptual framework. Automation in Construction, 2013. 34: p. 16-24.
110. Collins, R., et al., Integration of safety risk factors in BIM for scaffolding construction, in
Computing in Civil and Building Engineering (2014). 2014. p. 307-314.
111. Zhang, S.J., et al., BIM-based fall hazard identification and prevention in construction safety
planning. Safety Science, 2015. 72: p. 31-45.
112. Kim, K., Y. Cho, and S. Zhang, Integrating work sequences and temporary structures into
safety planning: Automated scaffolding-related safety hazard identification and prevention in
BIM. Automation in Construction, 2016. 70: p. 128-142.
113. Lu, M., et al., Integration of four-dimensional computer-aided design modeling and threedimensional
animation of operations simulation for visualizing construction of the main
stadium for the Beijing 2008 Olympic games. Canadian Journal of Civil Engineering, 2009.
36(3): p. 473-479.
114. Kang, L.S., et al., Development of methodology and virtual system for optimised simulation of
road design data. Automation in Construction, 2010. 19(8): p. 1000-1015.
68
115. Jiang, X., DEVELOPMENTS IN COST ESTIMATING AND SCHEDULING IN BIM TECHNOLOGY. Civil
Engineering Master′s Theses Department of Civil and Environmental
Engineering, Construction and Architectural Management, 2011.
116. Nobuyoshi Yabuki, P.D., P.E., M.ASCE ; and Tomoaki Shitani, A Management System for Cut
and Fill Earthworks Based on 4D CAD and EVMS, in Computing in Civil Engineering (2005).
2005.
117. Popov, V., et al., The use of a virtual building design and construction model for developing an
effective project concept in 5D environment. Automation in Construction, 2010. 19(3): p. 357-
367.
118. Ma, Z.L., et al., Application and extension of the IFC standard in construction cost estimating
for tendering in China. Automation in Construction, 2011. 20(2): p. 196-204.
119. Staub-French, S. and A. Khanzode, 3D and 4D modeling for design and construction
coordination: issues and lessons learned. Journal of Information Technology in Construction
(ITcon), 2007. 12(26): p. 381-407.
120. Dorée, L.L.O.S.T.H.a.A.G., Comparing Mindfulness in Manual and 4D-Supported Coordination
Practices, in Construction Research Congress 2014. 2014.
121. Scholtenhuis, L.L.o., T. Hartmann, and A.G. Dorée, Testing the Value of 4D Visualizations for
Enhancing Mindfulness in Utility Reconstruction Works. Journal of Construction Engineering
and Management, 2016. 142(7).
122. Trebbe, M., T. Hartmann, and A. Doree, 4D CAD models to support the coordination of
construction activities between contractors. Automation in Construction, 2015. 49: p. 83-91.
123. Scholtenhuis, L.L.O., T. Hartmann, and A.G. Doree, 4D CAD Based Method for Supporting
Coordination of Urban Subsurface Utility Projects. Automation in Construction, 2016. 62: p.
66-77.
124. Chin, S., et al., RFID+4D CAD for progress management of structural steel works in high-rise
buildings. Journal of Computing in Civil Engineering, 2008. 22(2): p. 74-89.
125. Rebolj, D., et al., Automated construction activity monitoring system. Advanced Engineering
Informatics, 2008. 22(4): p. 493-503.
126. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, D4AR–a 4-dimensional augmented reality
model for automating construction progress monitoring data collection, processing and
communication. Journal of information technology in construction, 2009. 14(13): p. 129-153.
127. Golparvar-Fard, M., S. Savarese, and F. Peña-Mora. Automated model-based recognition of
progress using daily construction photographs and IFC-based 4D models. in Construction
Research Congress 2010: Innovation for Reshaping Construction Practice. 2010.
128. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, Integrated Sequential As-Built and As-
Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM
Industry. Journal of Construction Engineering and Management, 2011. 137(12): p. 1099-
1116.
69
129. Bosche, F., Automated recognition of 3D CAD model objects in laser scans and calculation of
as-built dimensions for dimensional compliance control in construction. Advanced
Engineering Informatics, 2010. 24(1): p. 107-118.
130. Turkan, Y., et al., Toward Automated Earned Value Tracking Using 3D Imaging Tools. Journal
of Construction Engineering and Management-Asce, 2013. 139(4): p. 423-433.
131. Bosche, F., et al., Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs.-
BIM System. Journal of Computing in Civil Engineering, 2014. 28(4): p. 13.
132. Kim, C., B. Kim, and H. Kim, 4D CAD model updating using image processing-based
construction progress monitoring. Automation in Construction, 2013. 35: p. 44-52.
133. Golparvar-Fard, M., F. Pena-Mora, and S. Savarese, Automated Progress Monitoring Using
Unordered Daily Construction Photographs and IFC-Based Building Information Models.
Journal of Computing in Civil Engineering, 2015. 29(1): p. 19.
134. Han, K.K., D. Cline, and M. Golparvar-Fard, Formalized knowledge of construction sequencing
for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs.
Advanced Engineering Informatics, 2015. 29(4): p. 889-901.
135. Han, K.K. and M. Golparvar-Fard, Appearance-based material classification for monitoring of
operation-level construction progress using 4D BIM and site photologs. Automation in
Construction, 2015. 53: p. 44-57.
136. Kang, L.S., et al., Managing construction schedule by telepresence: Integration of site video
feed with an active nD CAD simulation. Automation in Construction, 2016. 68: p. 32-43.
137. de Vries, B. and J.M.J. Harink, Generation of a construction planning from a 3D CAD model.
Automation in Construction, 2007. 16(1): p. 13-18.
138. Staub-French, S., A. Russel, and N. Tran, Linear scheduling and 4D visualization. Journal of
Computing in Civil Engineering, 2008. 22(3): p. 192-205.
139. Kim, C., et al., Applicability of 4D CAD in Civil Engineering Construction: Case Study of a Cable-
Stayed Bridge Project. Journal of Computing in Civil Engineering, 2011. 25(1): p. 98-107.
140. Kang, L., et al., Development of Improved 4D CAD System for Horizontal Works in Civil
Engineering Projects. Journal of Computing in Civil Engineering, 2013. 27(3): p. 212-230.
141. Mawlana, M., et al., Integrating 4D modeling and discrete event simulation for phasing
evaluation of elevated urban highway reconstruction projects. Automation in Construction,
2015. 60: p. 25-38.
142. Zhou, Y., et al., Applicability of 4D modeling for resource allocation in mega liquefied natural
gas plant construction. Automation in Construction, 2015. 50: p. 50-63.
143. Su, X. and H.B. Cai, Enabling Construction 4D Topological Analysis for Effective Construction
Planning. Journal of Computing in Civil Engineering, 2016. 30(1): p. 10.
144. Chau, K., M. Anson, and D. De Saram, 4D dynamic construction management and
visualization software: 2. Site trial. Automation in construction, 2005. 14(4): p. 525-536.
70
145. Ma, Z.Y., Q.P. Shen, and J.P. Zhang, Application of 4D for dynamic site layout and
management of construction projects. Automation in Construction, 2005. 14(3): p. 369-381.
146. Tantisevi, K. and B. Akinci, Transformation of a 4D product and process model to generate
motion of mobile cranes. Automation in Construction, 2009. 18(4): p. 458-468.
147. Kumar, S.S. and J.C.P. Cheng, A BIM-based automated site layout planning framework for
congested construction sites. Automation in Construction, 2015. 59: p. 24-37.
148. Marzouk, M. and A. Abubakr, Decision support for tower crane selection with building
information models and genetic algorithms. Automation in Construction, 2016. 61: p. 1-15.
149. Li, Y.L.a.S., Research on Virtual Construction in the Construction Phase and Its 4D LOD
Analysis, in ICCREM 2013. 2013.
150. Dawood, R.M.J.D.a.N., Application of Visualisation Tools in Project Management in
Construction Industry: Innovation and Challenges, in Computing in Civil Engineering (2007).
2007.
151. Sugimoto, Y., et al., 4D CAD-based evaluation system for crane deployment plans in
construction of nuclear power plants. Automation in Construction, 2016. 71: p. 87-98.
152. Huang, T., et al., A virtual prototyping system for simulating construction processes.
Automation in construction, 2007. 16(5): p. 576-585.
153. Turkan, Y., et al. Towards automated progress tracking of erection of concrete structures. in
Proceedings of the 6th International Conference on Innovation in Architecture, Engineering &
Construction (AEC’10), State College, PA, USA. 2010.
154. Bosché, F., et al. Fusing 4D modelling and laser scanning for construction schedule control. in
Proc. of the 26th Annual Conf. Association of Researchers in Construction Management
(ARCOM 2010). 2010.
155. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, Monitoring of construction performance
using daily progress photograph logs and 4D as-planned models, in Computing in Civil
Engineering (2009). 2009. p. 53-63.
156. Hartmann, T., et al., Aligning building information model tools and construction management
methods. Automation in Construction, 2012. 22: p. 605-613.
157. Bansal, V.K., Application of geographic information systems in construction safety planning.
International Journal of Project Management, 2011. 29(1): p. 66-77.
158. Bansal, V.K. and M. Pal, Generating, evaluating, and visualizing construction schedule with
geographic information systems. Journal of Computing in Civil Engineering, 2008. 22(4): p.
233-242.
159. Chua, D.K.H., K.W. Yeoh, and Y.B. Song, Quantification of Spatial Temporal Congestion in
Four-Dimensional Computer-Aided Design. Journal of Construction Engineering and
Management-Asce, 2010. 136(6): p. 641-649.
160. Jongeling, R., et al., Quantitative analysis of workflow, temporary structure usage, and
productivity using 4D models. Automation in Construction, 2008. 17(6): p. 780-791.
71
161. Garrido4, S.S.R.M.J.T.F.C.M.C., On-Site BIM Model Use to Integrate 4D/5D Activities and
Construction Works: A Case Study on a Brazilian Low Income Housing Enterprise, in
Computing in Civil and Building Engineering (2014). 2014.
162. Hu, Z., J. Zhang, and Z. Deng, Construction process simulation and safety analysis based on
building information model and 4D technology. Tsinghua Science & Technology, 2008. 13: p.
266-272.
163. Golparvar-Fard, K.K.H.a.M., Multi-Sample Image-Based Material Recognition and Formalized
Sequencing Knowledge for Operation-Level Construction Progress Monitoring, in Computing
in Civil and Building Engineering (2014). 2014.
164. Golparvar-Fard, K.K.H.a.M., Automated Monitoring of Operation-level Construction Progress
Using 4D BIM and Daily Site Photologs, in Construction Research Congress 2014. 2014.
165. Zhang, C. and D. Arditi, Automated progress control using laser scanning technology.
Automation in Construction, 2013. 36: p. 108-116.
166. Bosche, F., Plane-based registration of construction laser scans with 3D/4D building models.
Advanced Engineering Informatics, 2012. 26(1): p. 90-102.
167. Ciribini, A.L.C., S.M. Ventura, and M. Paneroni, Implementation of an interoperable process to
optimise design and construction phases of a residential building: A BIM Pilot Project.
Automation in Construction, 2016. 71: p. 62-73.
168. Zhang, S., et al., Building information modeling (BIM) and safety: Automatic safety checking
of construction models and schedules. Automation in Construction, 2013. 29: p. 183-195.
169. Kang, L.S., et al., Development of a 4D object-based system for visualizing the risk information
of construction projects. Automation in Construction, 2013. 31: p. 186-203.
170. Mohammad Kasirossafar1, A.A.a.R.L.S., Developing the Sustainable Design with PtD Using
3D/4D BIM Tools, in World Environmental and Water Resources Congress 2012. 2012.
171. Sulankivi, K., et al. 4D-BIM for construction safety planning. in Proceedings of W099-Special
Track 18th CIB World Building Congress. 2010.
172. Yun, S.-h., et al., Preliminary study for performance analysis of BIM-based building
construction simulation system. KSCE Journal of Civil Engineering, 2014. 18(2): p. 531.
173. Rohani, M., M.Z. Fan, and C. Yu, Advanced visualization and simulation techniques for
modern construction management. Indoor and Built Environment, 2014. 23(5): p. 665-674.
174. Kubicki, C.B.G.H.a.S., Characterizing Collaborative 4D Use Contexts to Improve Interaction
Mechanisms Design, in Computing in Civil and Building Engineering (2014). 2014.
175. Montaser, A. and O. Moselhi, Methodology for automated generation of 4D BIM.
international conference, 2015. |