博碩士論文 104326018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.191.234.202
姓名 黃柏翔(Po-Hsiang Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 降濕條件對奈米無機鹽微粒的生成構形與雲凝結核活化率之影響
(Effects of Dehydration Conditions on Particle Morphology and Activation Ratio of Inorganic Nanoparticles)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 以數值模擬分析狹縫型虛擬衝擊器之效能★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例
★ 靜電集塵式ALI暴露系統之設計、開發與評估★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 構形與微粒的物理及化學特性息息相關,於製藥業、粉體工業、大氣科學等相關應用皆可扮演重要的影響因子。許多研究已指出氣膠微粒的構形會因降濕與結晶過程的不同而改變。在微粒降濕風化過程相關研究中,HT-DMA (Hygroscopic Tandem Differential Mobility Analyzer)為一常用之實驗系統,然而此系統無法確切得知微粒的構形與密度。因此本研究利用APM (Aerosol Particle Mass Analyzer,Kanomax 3601)量測氣膠微粒的質量分佈,結合HT-DMA量測微粒之電移動度粒徑,解析經歷不同降濕過程的無機鹽氣膠微粒之有效密度及動力形狀因子,藉以表徵及量化微粒之構形的變化。
研究結果顯示,液態無機鹽氣膠之降濕過程中,溶劑的揮發與溶質擴散之交互關係主導著乾燥後微粒的構形。於極度乾燥環境時,溶劑快速的揮發,傾向使無機鹽微粒呈現不規則形狀;反之,慢速乾燥利於溶質擴散堆積,易形成球狀結構。然而液態氣膠的乾燥為一極為複雜之過程,溶質之種類 ( 氯化鈉與硫酸銨 )、濃度,甚至氣膠粒徑之不同皆可能影響研究結論。因此,本研究結合擴散方程式與柯勒理論,模擬液珠的乾燥歷程;並應用無因次參數-佩雷數(Peclet number)量化溶劑揮發與溶質擴散之競爭行為,揭示微粒於不同參數設置之生成機制。
此外,為探究不同乾燥條件所形成之奈米無機鹽微粒的雲凝結核活化能力,本研究亦結合HT-DMA與CCNC (Cloud Condensation Nuclei Counter, DMT 100),量測經歷不同乾燥速率之無機鹽氣膠微粒的雲凝結核活化率。結果更指出,微粒之活化率可隨著物質、乾燥條件而有不同之變化趨勢。
摘要(英) Morphology of aerosol particles are related to their physical and chemical properties which may play an important role in pharmaceuticals, powder industry, and atmospheric science. Rich literature has shown dried particle shape depend on the dehydration condition and crystallization process. Hygroscopic tandem differential mobility analyzers (HT-DMA) are generally used to study the hygroscopic behavior of aerosol particles, however, it cannot provide the information about particle morphology and density. Therefore, in this study, in addition to a hygroscopic tandem differential mobility analyzer (HT-DMA) system, a hygroscopic coupled tandem DMA and aerosol particle mass analyzer (APM) were integrated. The former size change and latter mass was. The mass and diameter changes were used to derive the particle effective density and calculated dynamic shape factor which characterize particle shape.
The experimental results indicated that the solvent evaporation and solute diffusion dominated the morphology of the dried particles in dehydration process. In extreme dry condition, the particle tended to form in irregular shape due to the fast remove of solvent. In contrast, there was more sufficient time for the solute diffusion in slow drying and the particle formed in spherical shape. However, drying and crystallization of aqueous aerosol particle were complicated process. Numerous factors such as materials, solute concentration, and particle size could affect the dried particle morphology. Thus, in order to investigate the dehydration process of aerosol particle, this study combined the diffusion equation and Köhler theory. In addition, quantifying the competitive relationship between solvent evaporation and solute diffusion by the dimensionless parameter : Peclet number and revealing the mechanism of particle formation in different experimental parameters setup.
To understand the ability of nanoparticles to activate as cloud condensation nuclei in different drying condition. This study also conducted the HT-DMA-CCNC measurement and showed the activated fraction could vary in different experimental setup.
關鍵字(中) ★ 奈米無機鹽微粒
★ 降濕乾燥
★ 風化
★ 構形
關鍵字(英) ★ inorganic nanoparticle
★ dehydration
★ efflorescence
★ morphology
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
符號說明 x
一、 前言 1
1-1. 研究源起 1
1-2. 研究方法與目的 2
1-3. 研究流程 3
二、 文獻回顧 5
2-1. 氣膠微粒構形之重要性 5
2-1-1. 呼吸治療藥物之應用 5
2-1-2. 氣膠微粒吸濕特性與量測 6
2-2. 氣膠微粒之構形 8
2-3. 微粒之形成機制 10
2-3-1. 低佩雷數之乾燥過程 10
2-3-2. 高佩雷數之乾燥過程 12
2-4. 微粒之結晶 14
2-5. 微粒構形影響因子 15
2-5-1. 液珠起始粒徑 15
2-5-2. 液珠起始濃度 16
2-5-3. 液珠乾燥方式 16
2-6. 微粒構形變化趨勢 18
2-6-1. 溫控乾燥 Temperature-based 18
2-6-2. 調控相對濕度之乾燥 RH-based 19
三、 實驗流程與系統架設 20
3-1. 實驗流程 20
3-2. 實驗參數與儀器需求 22
3-3. 氣膠微粒降濕乾燥系統介紹 23
3-3-1. 氣膠微粒降濕-風化行為量測系統 23
3-3-2. 氣膠微粒乾燥構形量測系統 29
3-3-3. 相對濕度分佈(RH Profiles) 32
3-3-4. 乾燥速率 36
3-3-5. 氣膠微粒雲凝結核活化率量測系統 37
3-4. 氣膠微粒質量守恆 42
3-5. APM校正 43
3-6. CCNC量測結果修正 45
四、 理論計算 47
4-1. 液態氣膠微粒粒徑推算 47
4-1-1. 微粒吸濕生長因子 47
4-1-2. 柯勒理論 (Köhler theory) 48
4-1-3. 質量型吸濕性參數 κm 49
4-2. 佩雷數-Peclet Number 50
五、 結果與討論 55
5-1. HT-DMA-APM氣膠微粒構形量測結果 55
5-1-1. 氯化鈉構形變化 55
5-1-2. 硫酸銨構形變化 66
5-2. HT-DMA-CCNC氣膠微粒雲凝結核活化率量測結果 74
5-2-1. 氯化鈉活化率-臨界過飽和度 75
5-2-2. 硫酸銨活化率-臨界過飽和度 77
六、 結論 79
七、 參考文獻 81
八、 附錄 90
口試委員意見回覆 91
參考文獻 1. Houghton, J.T., Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Vol. 2. 1996: Cambridge University Press.
2. Haywood, J. and O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 2000. 38(4): p. 513-543.
3. Jaenicke, R., Atmospheric aerosols and global climate, in Climatic variations and variability: Facts and theories. 1981, Springer. p. 577-597.
4. Waggoner, A.P., et al., Optical characteristics of atmospheric aerosols. Atmospheric Environment (1967), 1981. 15(10-11): p. 1891-1909.
5. Rastak, N., et al., Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard. Atmospheric Chemistry and Physics, 2014. 14(14): p. 7445-7460.
6. Tang, I.N., Deliquescence properties and particle size change of hygroscopic aerosols. 1979, Brookhaven National Lab., Upton, NY (USA).
7. Mikhailov, E., et al., Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry and Physics, 2009. 9(24): p. 9491-9522.
8. Mikhailov, E., et al., Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys., 2009. 9(24): p. 9491-9522.
9. Weis, D.D. and G.E. Ewing, Water content and morphology of sodium chloride aerosol particles. Journal of Geophysical Research: Atmospheres, 1999. 104(D17): p. 21275-21285.
10. Leong, K., Morphology of aerosol particles generated from the evaporation of solution drops. Journal of Aerosol Science, 1981. 12(5): p. 417-435.
11. Baldelli, A., et al., Effect of crystallization kinetics on the properties of spray dried microparticles. Aerosol Science and Technology, 2016. 50(7): p. 693-704.
12. Wang, Z., et al., The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate. Aerosol Science and Technology, 2010. 44(11): p. 939-953.
13. Champion, J.A., Y.K. Katare, and S. Mitragotri, Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. Journal of Controlled Release, 2007. 121(1): p. 3-9.
14. DeCarlo, P.F., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004. 38(12): p. 1185-1205.
15. Gysel, M., et al., Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. Atmospheric Chemistry and Physics Discussions, 2003. 3(5): p. 4879-4925.
16. Mikhailov, E., et al., Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement. Atmos. Chem. Phys., 2004. 4(2): p. 323-350.
17. Nandiyanto, A.B.D. and K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22(1): p. 1-19.
18. Courrier, H., N. Butz, and T.F. Vandamme, Pulmonary drug delivery systems: recent developments and prospects. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2002. 19(4-5).
19. Heyder, J., et al., Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. Journal of Aerosol Science, 1986. 17(5): p. 811-825.
20. Beck-Broichsitter, M., O.M. Merkel, and T. Kissel, Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of controlled release, 2012. 161(2): p. 214-224.
21. Park, C.-W., et al., Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. International journal of pharmaceutics, 2013. 455(1): p. 374-392.
22. Zhu, B., et al., The solid-state and morphological characteristics of particles generated from solution-based metered dose inhalers: Influence of ethanol concentration and intrinsic drug properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 345-355.
23. Edwards, D.A., et al., Large porous particles for pulmonary drug delivery. Science, 1997. 276(5320): p. 1868-1872.
24. Tsapis, N., et al., Trojan particles: large porous carriers of nanoparticles for drug delivery. Proceedings of the National Academy of Sciences, 2002. 99(19): p. 12001-12005.
25. Hadinoto, K., et al., Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. International journal of pharmaceutics, 2007. 333(1): p. 187-198.
26. Balashazy, I., T.B. Martonen, and W. Hofmann, Fiber Deposition in Airway Bifurcations. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, 1990. 3(4): p. 243-260.
27. Sung, J.C., B.L. Pulliam, and D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends in biotechnology, 2007. 25(12): p. 563-570.
28. Elkordy, A.A., R.T. Forbes, and B.W. Barry, Stability of crystallised and spray-dried lysozyme. International journal of pharmaceutics, 2004. 278(2): p. 209-219.
29. Kulmala, M., et al., A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 2004. 4(2): p. 557-562.
30. Kerminen, V.M., et al., Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophysical research letters, 2005. 32(14).
31. Park, K., J.S. Kim, and A.L. Miller, A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM. Journal of Nanoparticle Research, 2009. 11(1): p. 175-183.
32. Tritscher, T., et al., Changes of hygroscopicity and morphology during ageing of diesel soot. Environmental Research Letters, 2011. 6(3).
33. Kittelson, D.B., Engines and nanoparticles: A review. Journal of Aerosol Science, 1998. 29(5-6): p. 575-588.
34. Park, K., D.B. Kittelson, and P.H. McMurry, Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Science and Technology, 2004. 38(9): p. 881-889.
35. Slowik, J.G., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Science and Technology, 2004. 38(12): p. 1206-1222.
36. Ku, B.K. and A.D. Maynard, Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science, 2006. 37(4): p. 452-470.
37. Vehring, R., W.R. Foss, and D. Lechuga-Ballesteros, Particle formation in spray drying. Journal of Aerosol Science, 2007. 38(7): p. 728-746.
38. Vehring, R., Pharmaceutical particle engineering via spray drying. Pharmaceutical research, 2008. 25(5): p. 999-1022.
39. Maury, M., et al., Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. European journal of pharmaceutics and biopharmaceutics, 2005. 59(2): p. 251-261.
40. Chew, N.Y. and H.-K. Chan, Use of solid corrugated particles to enhance powder aerosol performance. Pharmaceutical Research, 2001. 18(11): p. 1570-1577.
41. Maa, Y.F., P.A.T. Nguyen, and S.W. Hsu, Spray‐drying of air–liquid interface sensitive recombinant human growth hormone. Journal of pharmaceutical sciences, 1998. 87(2): p. 152-159.
42. Ting, T.-Y., I. Gonda, and E.M. Gipps, Microparticles of polyvinyl alcohol for nasal delivery. I. Generation by spray-drying and spray-desolvation. Pharmaceutical research, 1992. 9(10): p. 1330-1335.
43. Baras, B., M.-A. Benoit, and J. Gillard, Parameters influencing the antigen release from spray-dried poly (DL-lactide) microparticles. International journal of pharmaceutics, 2000. 200(1): p. 133-145.
44. Leong, K., Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. Journal of aerosol science, 1987. 18(5): p. 511-524.
45. Walton, A.G., et al., The formation and properties of precipitates. Vol. 23. 1967: Interscience Publishers New York.
46. Lenggoro, I.W., et al., An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of Materials Research, 2000. 15(3): p. 733-743.
47. Protheroe, M.D. and A.M. Al-Jumaily, Evaporation characteristics in nebuliser based humidification and drug delivery devices. Journal of Aerosol Science, 2017. 109: p. 13-27.
48. Lewis, E.R., The effect of surface tension (Kelvin effect) on the equilibrium radius of a hygroscopic aqueous aerosol particle. Journal of aerosol science, 2006. 37(11): p. 1605-1617.
49. Chen, C., et al., Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International, 2008. 34(2): p. 409-416.
50. Elversson, J., et al., Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. Journal of pharmaceutical sciences, 2003. 92(4): p. 900-910.
51. Iskandar, F., L. Gradon, and K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003. 265(2): p. 296-303.
52. Shinde, U., et al., Surface Tension as a Function of Temperature and Concentration of Liquids. 2015, IJCPS.
53. Hu, H. and R.G. Larson, Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 2006. 110(14): p. 7090-7094.
54. El-Sayed, T.M., D.A. Wallack, and C.J. King, Changes in particle morphology during drying of drops of carbohydrate solutions and food liquids. 1. Effect of composition and drying conditions. Industrial & Engineering Chemistry Research, 1990. 29(12): p. 2346-2354.
55. Bezantakos, S., et al., Relative humidity non-uniformities in Hygroscopic Tandem Differential Mobility Analyzer measurements. Journal of Aerosol Science, 2016. 101: p. 1-9.
56. Ehara, K., C. Hagwood, and K.J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. Journal of Aerosol Science, 1996. 27(2): p. 217-234.
57. Liao, B.-X., N.-C. Tseng, and C.-J. Tsai, The accuracy of the aerosol particle mass analyzer for nanoparticle classification. Aerosol Science and Technology, 2017: p. 1-11.
58. Cussler, E.L., Diffusion: mass transfer in fluid systems. 2009: Cambridge university press.
59. Petters, M.D. and S.M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 2007. 7(8): p. 1961-1971.
60. Clegg, S.L., P. Brimblecombe, and A.S. Wexler, Thermodynamic model of the system H+− NH4+− SO42-− NO3-− H2O at tropospheric temperatures. The Journal of Physical Chemistry A, 1998. 102(12): p. 2137-2154.
61. Mikhailov, E., et al., Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmospheric Chemistry and Physics, 2013. 13(2): p. 717-740.
62. Al-Khattawi, A., et al., The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv, 2017: p. 1-17.
63. Power, R., et al., The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chemical Science, 2013. 4(6): p. 2597-2604.
64. Wang, S. and T. Langrish, A review of process simulations and the use of additives in spray drying. Food Research International, 2009. 42(1): p. 13-25.
65. Vand, V., Viscosity of solutions and suspensions. I. Theory. The Journal of Physical Chemistry, 1948. 52(2): p. 277-299.
66. Breslau, B.R. and I.F. Miller, On the viscosity of concentrated aqueous electrolyte solution. The Journal of Physical Chemistry, 1970. 74(5): p. 1056-1061.
67. Rose, D., et al., Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics, 2008. 8(5): p. 1153-1179.
68. Gysel, M., E. Weingartner, and U. Baltensperger, Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Environmental Science & Technology, 2002. 36(1): p. 63-68.
69. Oakley, D.E., Produce uniform particles by spray-drying. Chemical Engineering Progress, 1997. 93(10): p. 48-54.
70. Alamilla-Beltran, L., et al., Description of morphological changes of particles along spray drying. Journal of Food Engineering, 2005. 67(1-2): p. 179-184.
71. Kim, S., B. Liu, and M. Zachariah, Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method. Chemistry of materials, 2002. 14(7): p. 2889-2899.
72. Maas, S.G., et al., The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder technology, 2011. 213(1): p. 27-35.
73. Gao, Y., S.B. Chen, and E.Y. Liya, Efflorescence relative humidity of airborne sodium chloride particles: A theoretical investigation. Atmospheric Environment, 2007. 41(9): p. 2019-2023.
74. Gao, Y., L.E. Yu, and S.B. Chen, Efflorescence relative humidity of mixed sodium chloride and sodium sulfate particles. J Phys Chem A, 2007. 111(42): p. 10660-6.
75. Gao, Y., S.B. Chen, and L.E. Yu, Efflorescence relative humidity for ammonium sulfate particles. J Phys Chem A, 2006. 110(24): p. 7602-8.
76. Kuwata, M. and Y. Kondo, Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmospheric Chemistry and Physics, 2009. 9(16): p. 5921-5932.
77. Vlasenko, S.S., et al., Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties. Atmospheric Measurement Techniques, 2017. 10(3): p. 1269.
78. Badger, C., et al., Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate. Atmospheric Chemistry and Physics, 2006. 6(3): p. 755-768.
79. Pöschl, U., Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 2005. 44(46): p. 7520-7540.

指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2018-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明