博碩士論文 983402001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:3.145.74.54
姓名 盧育辰(Yu-Chen Lu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Uncertainties of Geometrical and Mechanical Properties of Heterogeneous Media and Discontinuous Rock Masses)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文分別提出異質性介質(heterogeneous media)及不連續岩體(discontinuous rock mass)的體積比(volumetric fraction)、裂隙程度(fracture intensity)及力學性質不確定性之解析解及數值解,並根據統計定理得知幾何及力學性質之關係。
由體積比或裂隙程度引致之不確定性可根據幾何模型量測的不確定性推導得知。針對異質性介質(併構岩、混凝土等)量測體積比之不確定性,本文利用表徵單元(representative volume element, RVE)作為統計推論模型,分別得到以一維及二維量測體積比不確定性之解析解;外方內圓的表徵單元被應用於二維等向異質性介質之形貌,而外平行四邊形內橢圓的表徵單元被應用於二維異向異質性介質之形貌,另外方內球的表徵單元應用於三維等向異質性介質之形貌。此外,本文分別撰寫二維及三維異質性介質模擬一維及二維量測體積比的不確定性,提出數值解並驗證解析解之正確性。此數值程式應用週期性邊界(periodic boundaries),可消弭邊界效應及精準控制異質性介質之體積比。針對不連續岩體(裂隙岩體)量測裂隙程度之不確定性,本文利用柏松分配(Poisson distribution)模型分別推得一維、二維及三維裂隙程度之不確定性解析解。此外,本文利用自行撰寫之離散裂隙網絡(discrete fracture network, DFN)及市售離散裂隙網絡軟體FracMan模擬一維、二維及三維裂隙程度之不確定性數值解,並驗證解析解之結果。
由體積比及裂隙程度引致力學性質之不確定性,可將體積比及裂隙程度的不確定性代入至常態隨機變數及幾何力學關係式中得知。有關異質性介質的幾何及力學性質關係式可由微觀力學模式(micro-mechanical models)或顆粒流軟體(Particle Flow Code, PFC)模擬決定,而不連續岩體的幾何及力學性質關係式則由合成岩體(synthetic rock mass, SRM = DFN + PFC)模型模擬得知。由塊體或裂隙排列引致之力學性質之不確定性係由一系列參數研究得知。根據統計推導,異質性介質或裂隙岩體力學性質的不確定性可分別由「體積比及裂隙程度引致力學性質之不確定性」及「塊體或裂隙排列引致力學性質之不確定性」計算得到,此結果業經數值驗證。另本文在每章節末,提供一至數個實例操作及案例示範如何使用本文提出之幾何及力學性質不確定性之解。
摘要(英) This study proposes analytical and numerical solutions for the uncertainties of volumetric fraction (Vf), fracture intensity (FI), and mechanical properties in heterogeneous media and discontinuous rock masses, respectively. In addition, the relationship of the uncertainties of geometries estimates and mechanical properties can be also obtained via statistical theorem.
The uncertainties induced by Vf or FI can be obtained by addressing the solutions of geometric uncertainty. For a heterogeneous media (bimrock, concrete…), the representative volume element (RVE) is employed for a statistical derivation model. The circle-squared RVE is used for 2D isotropic (or randomly orientated) heterogeneous rock features, the ellipse-parallelogram RVE is used for 2D anisotropic (or preferred orientation) heterogeneous medium features, and the sphere-cubic RVE is used for 3D heterogeneous medium features. To validate the analytical solutions, this study develops numerical heterogeneous media codes in 2D and 3D to demonstrate 1D and 2D Vf measurements, respectively. These codes employ periodic boundaries to eliminate the boundary effect and to control the volumetric fraction of the model more precisely. For a discontinuous rock mass (fractured rock), the Poisson distribution model is used for a mathematical derivation model for 1D, 2D, and 3D fracture intensity (P10, P21, and P32, respectively) measurements. This study also develops a discrete fracture network (DFN) code to simulate P10 and P21 measurements. In addition, the commercial DFN code, FracMan, is employed to simulate P21 and P32 measurements. Similarly, these simulations are used to validate the analytical solutions of fractured rock.
The uncertainty of the mechanical properties induced by Vf or FI can be obtained by substituting the results for the uncertainty of Vf or FI into a normal random variable from a correlative model of that property. In the correlative model analysis, the mechanical properties of a heterogeneous rock mass can be determined using micro-mechanical models or Particle Flow Code (PFC) simulations, and the mechanical properties of a discontinuous rock mass can be determined via simulations of a synthetic rock mass (SRM, which combines DFN and PFC models). Several systematic parametric studies are carried out to investigate the mechanical properties and their uncertainties and obtain those of a heterogeneous or discontinuous rock induced by assemblages (block, fracture, or particle). According to the statistical analysis, the uncertainties of the mechanical properties of site samplings can be calculated from the uncertainties induced by the Vf or FI and the uncertainties induced by assemblages of blocks, fractures, and particles. This relation can be confirmed through numerical simulations. One or two illustrations of how to use the proposed solutions are given at the end of each chapter.
關鍵字(中) ★ 不確定性
★ 異質性介質
★ 不連續岩體
★ 裂隙岩體
★ 體積比
★ 裂隙程度
★ 立體量測學
★ 單軸壓縮試驗
★ 力學性質
★ 合成岩體
★ 離散元素法
關鍵字(英) ★ uncertainty
★ heterogeneous media
★ discontinuous rock mass
★ fractured rock
★ volumetric fraction
★ fracture intensity
★ stereology
★ uniaxial compressive test
★ mechanical properties
★ synthetic rock mass
★ discrete element method
論文目次 摘要 ..I
AbstractIII
致謝 ..VI
Contents..IX
List of figures..XII
List of tables.XXVII
Notations. XXXI
1. Introduction. 1
1.1. Backgrounds . 1
1.2. Motivations and objectivities. 16
1.3. Organization 19
2. Measurement errors and statistics backgrounds.. 21
2.1. Definitions of measurement errors . 21
2.2. The uncertainty between volumetric fraction and mechanical properties.. 22
2.3. The central limit theorem. 27
2.4. The total sum of square. 32
3. Uncertainty of volumetric fraction measurement in heterogeneous media using 1D measurement . 34
3.1. Introduction. 34
3.2. Analytical solution.. 36
3.3. Numerical simulation. 47
3.4. Validations .. 53
3.5. Implementations 66
3.6. Summary.. 73
4. Uncertainty of volumetric fraction measurement in heterogeneous rock mass by using 2-D sampling window 74
4.1. Introduction. 74
4.2. Analytical solution.. 76
4.3. Numerical simulation. 82
4.4. Case studies. 86
4.5. Implementations 91
4.6. Summary.. 95
5. Mechanical behaviors of heterogeneous rock mass and its variations. 97
5.1. Introduction. 97
5.2. Micromechanical models. 99
5.3. Numerical simulation method. 101
5.4. Results. 108
5.5. Deformability estimation from the uncertainty of volumetric fraction measurement (implementation) . 149
5.6. Summary 155
6. Uncertainty of 1D fracture intensity measurements. 157
6.1. Introduction.. 157
6.2. Analytical solution 161
6.3. Numerical simulations 169
6.4. Results. 178
6.5. Implementations. 181
6.6. Summary 198
7. Uncertainty of 2D fracture intensity measurements. 199
7.1. Introduction.. 199
7.2. Analytical solution 200
7.3. Numerical simulation.. 204
7.4. Results. 207
7.5. Implementation .. 212
7.6. Summary 216
8. Uncertainty of 3D fracture intensity measurements. 217
8.1. Introduction.. 217
8.2. Analytical solution 219
8.3. Numerical simulation.. 223
8.4. Results. 228
8.5. Implementations. 244
8.6. Summary 252
9. Uncertainty of mechanical properties of discontinuous rock mass. 255
9.1. Introduction.. 255
9.2. Theoretical analysis . 257
9.3. Methodology 258
9.4. Results. 266
9.5. Implementations. 283
9.6. Summary 286
10. Conclusions and recommendations.. 289
References.. 297
參考文獻 1. Afifipour, M., Moarefvand, P. (2014a). Mechanical behavior of bimrocks having high rock block proportion. International Journal of Rock Mechanics & Mining Sciences, 65, 40-48.
2. Afifipour, M., Moarefvand, P. (2014b). Failure patterns of geomaterials with block-in-matrix texture: experimental and numerical evaluation. Arabian Journal of Geosciences, 7, 2781-2792.
3. Amadei, B., & Goodman, R. E. (1981). A 3D constitutive relation for fractured rock masses. Proceedings of the International Symposium on the Mechanical Behaviour of Structured Media, Ottawa, Canada, 249-268.
4. ASTM (2012). Standard test method for microscopical determination of parameters of the air-void system in hardened concrete. ASTM, Pennsylvania, USA.
5. Baecher, G. B., Lanney, N. A., & Einstein, H. H. (1978). Statistical description of rock properties and sampling, The 18th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado, 22-24 June, Paper No. 77-400.
6. Barbero, M., Bonini, M., & Borri-Brunetto, M. (2007). Numerical modeling of the mechanical behavior of bimrock, Proceedings 11th International Congress of ISRM, Lisbon, Portugal, 377-389.
7. Barbero, M., Bonini, M., Borri-Brunetto, M. (2008). Three-dimensional finite element simulations of compression tests on bimrock, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India.
8. Barthel, M., Klimanek, P., & Stoyan, D. (1985). Stereological substructure analysis in hot-deformed metals from TEM-images. Czech. J. Phys., B35, 265-268.
9. Bentz, D. P., & Garboczi, E. J. (1999). Computer modeling of the interface transition zone – Microstructure and properties. RILEM ETC, 349-385.
10. Butcher, J. C. (1996). A history of Runge-Kutta methods. Applied Numerical Mathematics, 20, 247-260.
11. Chalhoub, M., & Pouya, A. (2008). Numerical homogenization of a fractured rock mass: A geometrical approach to determine the mechanical representative elementary volume. Electronic Journal of Geotechnical Engineering, 13, 1-12.
12. Chang, D. W. (2009). Measurement method of crack density in concrete, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:張道武,混凝土量測裂縫之方法,國立中央大學碩士論文)
13. Chang, H. H. (2012), Uncertainty of volumetric fraction estimates in a heterogeneous material using 2-D probes, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:張顥薰,面積比法量測異質性介質體積比之不確定性,國立中央大學碩士論文)
14. Cheng, H. H. (2014). Numerical simulations of uniaxial compressive strength and elastisity of bimrock by using PFC2D, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:程泓皓,以PFC2D模擬併構岩單壓強度及變形性,國立中央大學碩士論文)
15. Cheeney, R. F. (1983). Statistical methods in geology for field and lab decisions. London, UK: Allen & Unwin Ltd.
16. Cho, N., Martin, C. D., & Sego, D. C. (2007). A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 44, 997-1010.
17. Coli, N., Berry, P., & Boldini, D. (2011). In situ non-conventional shear tests for the mechanical characterization of a bimrock. International Journal of Rock Mechanics & Mining Sciences, 48, 95-102.
18. Coli, N., Berry, P., Boldini, D., & Bruno, R. (2012). The contribution of geostatistics to the characterisation of some bimrock properties. Engineering Geology, 137-138, 53-63.
19. Cundall, P. A., Pierce, M., Ivars, D. M. (2008). Quantifying the size effect of rock mass strength, Proceedings of the First South Hemisphere International Rock Mechanics Symposium, Australia, 3-15.
20. Deere, D. U., & Miller, R. P. (1966). Engineering classification and index properties for intact rock. Air Force Weapons Laboratory (WLDC), Kirtland Air Force Base, New Mexico. Report AFWL-TR-65-116.
21. Delesse, M. A. (1847). Procede mecanique pour determiner la composition des roches. Comptes Rendues de I’Academie des Sciences, 25, 544-545.
22. Dershowitz, W. S. (1985), Rock joint system, Doctoral dissertation, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
23. Dershowitz, W. S., & Herda, H. H. (1992). Interpretation of fracture spacing and intensity, Proc 32nd US Rock Mech Symp, Santa Fe, NM, 757-766.
24. Einstein, H. H., & Baecher, G. B. (1983). Probabilistic and statistical methods in engineering geology - Specific method and examples - Part I: Exploration. Rock Mechanics and Rock Engineering, 16, 39-72.
25. Esmaieli, K., Hadjigeorgiou, J., & Grenon, M. (2010). Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick mine. International Journal of Rock Mechanics and Mining Sciences, 47, 915-926.
26. Farichah, H. (2017). Representative elementary volume of P32 and hydraulic conductivity of fractured rock masses, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in English) (中文:法麗佳,針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討,國立中央大學碩士論文)
27. Farichah, H., Hsu, C. J., & Tien, Y. M. (2017). A novel equation to determine geometrical representative elementary volume of fractured rock mass, The 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, Paper No. 17-358.
28. Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 217(1130), 295-305.
29. Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge, UK: Cambridge Univ. Press.
30. Fouche, O., & Diebolt, J. (2004). Describing the geometry of 3D fracture systems by correcting for linear sampling bias. Mathematical Geology, 36(1), 33-63.
31. Gerrard, C. M. (1982). Equivalent elastic moduli of a rock mass consisting of orthorhombic layers. International Journal of Rock Mechanics and Mining Sciences, 19, 9-14.
32. Gokceoglu, C. (2002). A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara Agglomerates from their petrographic composition. Engineering Geology, 66, 39-51.
33. Golder Associates (2011). FracMan7: User documentation. Atlanta, Golder Associates Inc.
34. Grenon, M., & Hadjigeorgiou, J. (2012). Applications of fracture system models (FSM) in mining and civil rock engineering design. International Journal of Mining, Reclamation and Environment, 26, 55-73.
35. Gross, M. R. (1993). The origin and spacing of cross joints: Examples from the Monterrey Formation, Santa Barbara coastline, California. Journal of Structural Geology, 15(6), 737–751.
36. Gutierrez, M., & Youn, D. J. (2015). Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 7, 626-637.
37. Hald, A. (2003). A History of Probability and Statistics and Their Applications before 1750. NJ, USA: John Wiley & Sons, Inc.
38. Hashin, Z., & Shtrikman, S. (1962). On some variational principles in anisotropic and nonhomogeneous and elasticity. Journal of the Mechanics and Physics Solids, 10, 335-342.
39. Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech, 21, 236.
40. Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213-222.
41. Hilliard, J. E., & Cahn, J. W. (1961). An evaluation of procedures in quantitative metallography for volume-fraction analysis. Transactions of the Metallurgical Society of Aime, 221, 344-352.
42. Holmes, A. (1921). Petrographic Methods and Calculations. London, UK: Thos. Murray and Co.
43. Hsieh, M. H. (2006). The resembled bimrock mechanical behavior of colluvial materials-Li-Shan landSlide area as an example, Master’s thesis, Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan. (in Chinese) (中文:謝孟修,崩積層之類併構岩材料力學行為與模式-以梨山地滑區為例,國立交通大學碩士論文)
44. Hsu, C. J. (2017), The uncertainty of fracture intensity and mechanical properties of rock masses, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:許哲睿,岩體裂隙程度與力學性質之不確定性,國立中央大學碩士論文)
45. Huang, L., Tang, H., Tan, Q., Wang, D., Wang, L., Ez Eldin, M. A. A., …, & Wu, Q. (2016). A novel method for correcting scanline-observational bias of discontinuity orientation. Scientific Reports, published online 2016 Mar 10.
46. Huang, Q., & Angelier, J. (1989). Fracture spacing and its relation to bed thickness. Geological Magazine, 126(04), 355-362.
47. Huang, Y. R. (2017), The characteristics of p-wave velocity on concrete surfaces measured by the dry-point ultrasonic instrument, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:黃彥儒,乾點式超音波儀量測混凝土表面之波速特性,國立中央大學碩士論文)
48. International Society of Rock Mechanics (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences, 16(2), 135-140.
49. International Society of Rock Mechanics (1981). Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties, Rock Characterization Testing & Monitoring ISRM Suggested Methods, 81-92.
50. Itasca (2008). Partical Flow Code in 3 Dimensions (PFC3D) Version 4.0, FISH. Minneapolis, Minnesota, Itasca Consulting Group Inc.
51. Ivars, D. M., Pierce, M., De Gagne, D., & Darcel, C. (2008) Anisotropy and scale dependency in jointedrock mass strength-a synthetic rock massstudy, Proceedings of the First International FLAC/DEM Symposium. Minneapolis, USA.
52. Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011) The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences, 48, 219-244.
53. Ji, S., & Saruwatari, K. (1998). A revised model for the relationship between joint spacing and layer thickness. Journal of Structural Geology, 20(11), 1495-1508.
54. Kahraman, S., & Alber, M. (2006). Estimating the unconfined compressive strength and elastic modulus of a fault breccia mixture of weak rocks and strong matrix. International Journal of Rock Mechanics and Mining Sciences, 43, 1277-1287.
55. Kahraman, S., & Alber, M. (2008). Triaxial strength of a fault breccia of weak rocks in a strong matrix. Bull Eng Geol Environ, 67, 435-441.
56. Kahraman, S., Alber, M. (2009). Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 42, 117-127.
57. Kahraman, S., Alber, M., Fener, M., Gunaydin, O. (2015). An assessment on the indirect determination of the volumetric block proportion of Misis fault breccia (Adana, Turkey). Bull. Eng. Geol. Environ., 74, 899-907.
58. Kalender, A., Sonmez, H., Medley, E., Tunusluoglu, C., & Kasapoglu, K. E. (2014). An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Engineering Geology, 183, 65-79.
59. Khani, A., Baghbanan, A., & Hashemolhosseini, H. (2013). Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 63, 104-112.
60. Knudsen, L., Weibel, E. R., Gundersen, H. J. G., Weinstein, F. V., & Ochs, M. (2010). Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J. Appl. Physiol., 108, 412-421.
61. Koch, G. S. Jr., & Link, R. F. (1971). Statistical analysis of geological data, (p. 438). New York: Dover Publications.
62. Kozubowski, T. J., Meerschaert, M. M., & Gustafson, G. (2008). A new stochastic model for fracture transmissivity assessment. Water Resources Research, 44(2), W02435.
63. Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of Sedimentary Petrography. New York, USA: Appleton-century Company.
64. Kulatilake, P. H. (1985). Estimating elastic constants and strength of discontinuous rock. Journal of Geotechnical Engineering, 111, 847-864.
65. Kulatilake, P. H. S. W., Chen, J., Teng, J., Pan, G., & Xiao, S. (1995). Discontinuity network modeling of the rock mass around a tunnel close to the proposed permanent shiplock area of the Three Gorges Dam site in China, In Proceedings of the 35th US Rock Mechanics Symposium, eds. J. J. K. Daemen, R. A. Schultz, pp. 807-812, Balkema, Rotterdam.
66. Kuo, M. C. (2005), The measurement of block volumetric fraction and the mechanical behaviors of composite rock mass, Doctoral dissertation, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:郭明傳,複合岩體之岩塊體積比量測及其力學行為,國立中央大學博士論文)
67. Lama, R. D., & Vutukuri, V. S. (1978). Handbook on Mechanical Property of Rocks. Borntraeger, Berlin: Trans Tech Pubn.
68. Li, H. H. (2008). The microscopic mechanism associated with mechanical behavior of sandstone – using distinct element method, Doctoral dissertation, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese) (中文:李宏輝,砂岩力學行為之微觀機制-以個別元素法探討,國立臺灣大學博士論文)
69. Lin, P. S. (1986). A study on engineering properties of compacted lateritic gravels. Journal of the Chinese Institute of Engineers, 9, 533-545.
70. Lind, D. A., Marchal, W. G., & Wathen, S. A. (2008). Statistical Techniques in Business and Economics, 13th edition. New York, The McGraw-Hill Companies.
71. Lindquist, E. S. (1994), The strength and deformation properties of Melange, Doctoral dissertation, Department of Civil Engineering, University of California, Berkeley, USA.
72. Lindquist, E. S., & Goodman, R. E. (1994). The strength and deformation properties of a physical model melange. Proceedings of the 1st North American Rock Mechanics Symposium, Austin, Texas. Balkema.
73. Liu, W. C. (2013). Numerical simulation for layered rock under Brazilian test, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:劉文智,以數值模擬層狀岩石巴西試驗,國立中央大學碩士論文)
74. Lu, B., Ge, X. R., Zhu, D. L., & Chen, J. P. (2005). Fractal study on the representative element volume of jointed rock masses. Chin J Rock Mech Eng, 24, 1355-1361.
75. Lu, Y. B. (2012), Measuring inner crack and construction of geo-material by using computed tomography scan, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:呂彥標,以電腦斷層掃描量測大地材料內部裂縫與組構,國立中央大學碩士論文)
76. Lu, Y. C., Tien, Y. M., & Juang, C. H. (23 Oct. 2017 Accepted). The uncertainty of 1D fracture intensity measurements. Journal of Geophysical Research-Solid Earth. DOI: 10.1002/2016JB013620.
77. Mardia, K. V. (1972). Statistics of directional data. London, New York: Academic Press.
78. Mauldon, M. (1994). Intersection probabilities of impersistent joints. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 31(2), 107-115.
79. Mauldon, M., Dunne, W. M., & Rohrbaugh, M. B. Jr. (2001). Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces. Journal of Structural Geology, 23(2-3), 247-258.
80. Mauldon, M., & Mauldon, J. G. (1997). Fracture sampling on a cylinder: From scanlines to boreholes and tunnels. Rock Mechanics and Rock Engineering, 30(3), 129-144.
81. Mauldon, M., Rohrbaugh, M. B., Dunne, W. M., & Lawdermilk, W. (1999). Fracture intensity estimates using circular scanlines. In R. L. Krantz, G. A. Scott, & P. H. Smeallie (Eds.), Proceedings of the 37th US Rock Mechanics Symposium, (pp. 777-784). Rotterdam: Balkema.
82. Mauldon, M., & Wang, X. (2003). Measuring fracture intensity in tunnels using cycloidal scanlines, Proceedings of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering and the 39th U.S. Rock Mechanics Symposium.
83. McLaughlin, R. (1997). A study of differential scheme for composite materials. International Journals of Engineering Science, 15, 237-244.
84. Medley, E. W. (1994), The engineering characterization of Melange and similar block-in-matrix-rocks (bimrocks), Doctoral Dissertation, Department of Civil Engineering, University of California, Berkeley, USA.
85. Medley, E. W. (1997). Uncertainty in estimates of block volumetric proportions in melange, In Proceedings International Symposium on Engineering Geology and Environment, AA Balkema.
86. Medley, E. W. (2001). Orderly characterization of chaotic Franciscan Melange. Felsbau-Rock and Soil Engng, 22, 27-34.
87. Medley, E. W., & Goodman, R. E. (1994). Estimating the block volumetric proportions of Melanges and similar block-in-matrix rocks (bimrocks). Proceedings of the 1st North American Rock Mechanics Symposium, Austin, Texas. AA Balkema.
88. Medley, E. W., & Sanz Rehermann, P. F. (2004). Characterization of bimrocks (rock/soil mixtures) with application to slope stability problems. Proceedings: Eurorock 2004 & 53rd Geomechanics Colloquium, Salzburg, Austria.
89. Min, K. B., & Jing, L. (2003). Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. International Journal of Rock Mechanics and Mining Sciences, 40, 795-816.
90. Morland, L. W. (1976). Elastic anisotropy of regularly jointed media. Rock Mechanics, 8(1), 35-48.
91. Narr, W. (1991). Fracture density in the deep subsurface: Techniques with application to Point Arguello oil field. AAPG Bulletin, 75(8), 1300-1323.
92. Nordahl, K., Messina, C., Berland, H., Rustad, A. B., & Rimstad, E. (2014). Impact of multiscale modelling on predicted porosity and permeability distributions in the fluvial deposits of the Upper Lunde Member (Snorre Field, Norwegian Continental Shelf). Geological Society, London, Special Publications, 387, 85-109.
93. Oda, M. (1985). Permeability tensor for discontinuous rock masses. Geotechnique, 35, 483-495.
94. Oda, M. (1988). A method for evaluating the representative elementary volume based on joint survey of rock mass. Can Geotech J, 25, 440–447.
95. Ortega, O. J., Marret, R. A., & Laubach, S. E. (2006). A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bulletin, 90(2), 193-208.
96. Pang, Z. H. (1998), A numerical method to evaluate the representative elemental volume (REV) of rock mass based on the probability model of jointed network and the element free Galerkin method (EFGM). Dissertation, Chinese Academy of Sciences, Wuhan. (中文:龐作會,基於節理網絡模型的岩體REV數值估算與網格伽遼金法EFGM,中科院武漢岩土力學研究所)
97. Pan, Y. W., Hsieh, M. H., & Liao, J. J. (2008). Mechanical properties of virtual block-in-matrix Colluvium, The 42nd U. S. Rock Mechanics Symposium (USRMS), San Francisco.
98. Pariseau, W. G., Puri, S., & Schmelter, S. C. (2008) A new model for effects of impersistent joint sets on rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 45, 122-131.
99. Pierce, M., Gaida, M., & DeGagne, D. (2009). Estimation of rock block strength, In The 3rd CANUS Rock Mechanics Symposium, Toronto, 1-14.
100. Phoon, K. K., Kulhawy, F. H., & Grigoriu, M. D. (1995). Reliability-based design of foundations for transmission line structures. Electric Power Research Institute, Report TR-105000.
101. Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329-1364.
102. Poulsen, B. A., Adhikary, D. P., Elmouttie, M. K., & Wilkins, A. (2015). Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion. International Journal of Rock Mechanics and Mining Sciences, 80, 171-180.
103. Priest, S. D. (1993). Discontinuity analysis for rock engineering. London, UK: Chapman and Hall.
104. Priest, S. D., & Hudson, J. A. (1976). A discontinuities spacing in rock. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 13(5), 135-148.
105. Priest, S. D., & Hudson, J. A. (1981). Estimation of discontinuity spacing and trace length using scan line surveys. International Journal of Rock Mechanics and Mining Sciences, 18(3), 183-197.
106. Resende, D. (2017). Central limit theorem, Wikipedia, https://en.wikipedia.org/wiki/Central_limit_theorem#/media/File:Central_Limit_Theorem.png (date: 2018.04.27).
107. Rives, T., Razack, M., Petit, J.-P., & Rawnsley, K. D. (1992). Joint spacing: Analog and numerical simulations. Journal of Structural Geology, 14(8-9), 925-937.
108. Russ, J. C, & Dehoff, R. T. (1999). Practical Stereology. New York, USA: Plenum Press.
109. Schultz, R. (1996). Relative scale and the strength and deformability of rock masses. J Struct Geol, 18, 1139-1149.
110. Siao, Y. C. (2008), Estimating confidence interval of the volumetric fraction of block by areal method, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:蕭永燦,以面積法決定岩塊體積比之信賴區間,國立中央大學碩士論文)
111. Sonmez, H., Gokceoglu, C., Tuncay, E., Medley, E. W., Nefeslioglu, H. A. (2004). Relationships between volumetric block proportions and overall UCS of a volcanic bimrock. Felsbau-Rock and Soil Engng, 5, 27-34.
112. Sonmez, H., Gokceoglu, C., Medley, E. W., Tuncay, E., & Nefeslioglu, H. A. (2006a). Estimating the uniaxial compressive strength of a volcanic bimrock. International Journal of Rock Mechanics and Mining Sciences, 43, 554-561.
113. Sonmez, H., Gokceoglu, C., Nefeslioglu, H. A., & Kayabasi, A. (2006b). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics & Mining Sciences, 43, 224-235.
114. Sonmez, H., Ercanoglu, M., Kalender, A., Dagdelenler, G., & Tunusluoglu, C. (2016). Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension. International Journal of Rock Mechanics & Mining Sciences, 86, 91-103.
115. Stein, A., & Yifru, M. Z. (2010). Stereological estimation of uncertain and changing objects from remote sensing image mining. Transactions in GIS, 14, 481-496.
116. Terzaghi, R. D. (1965). Sources of errors in joint surveys. Geotechnique, 15(3), 287-304.
117. Tien, Y. M., Lin, J. S., Kou, M. C., Lu, Y. C., Chung, Y. J., Wu, T. H., & Lee, D. H. (2010a). Uncertainty in estimation of volumetric block proportion of bimrocks by using scanline Method, The 44th U.S. Rock Mechanics/Geomechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Paper no. 10-158.
118. Tien, Y. M. Chu, C. A., Chung, Y. J., Lu, Y. C., Zhang, D, W., Zhang, S, X., Guan, Y. M., & Yeh, D. H. (2010b). The study of crack in highway piers at TK340~TK343 of the Taiwan High Speed Rail. Taiwan High Speed Rail Corporation. (in Chinese) (中文:田永銘、朱正安、鐘翊展、盧育辰、張道武、張紹秋、官毅明、葉東航,高鐵里程TK340~TK343高架橋墩柱裂縫成因研究,台灣高速鐵路股份有限公司)
119. Tien, Y. M., Lu, Y. C., Wu, T. H., Lin, J. S., & Lee, D. H. (2011). Quantify uncertainty in scanline estimates of volumetric fraction of anisotropic bimrocks, The 45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco. Paper no. 11-345.
120. Tien, Y. M., Lu, Y. C., Chang, H. H, Chung, Y. C., Lin, J.S., & Lee, D. H. (2012a). Uncertainty of volumetric fraction estimates using 2-D measurements, The 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago. Paper no. 12-494.
121. Tien, Y. M., Chung, Y. J., Lu, Y. C., & Chang, H. H. (2012b). Uncertainty of block volumetric proportions and mechanical properties of bimrocks (I). Ministry of Science and Technology, ROC (Taiwan), NSC-99-2221-E-008-060-MY3. (in Chinese) (中文:田永銘、鐘翊展、盧育辰、張顥薰,併構岩體積比與力學性質之不確定性(I),中華民國科技部)
122. Tien, Y. M., Chung, Y. J., Lu, Y. C., Chang, H. H., Cheng, H. H., & Liu, W. C. (2012c). Uncertainty of block volumetric proportions and mechanical properties of bimrocks (II). Ministry of Science and Technology, ROC (Taiwan), NSC-99-2221-E-008-060-MY3. (in Chinese) (中文:田永銘、鐘翊展、盧育辰、張顥薰、程泓皓、劉文智,併構岩體積比與力學性質之不確定性(II),中華民國科技部)
123. Tien, Y. M., Chung, Y. J., Lu, Y. C., Lin, Y. M., Chang, H. H., Yeh, D. H., Lin, H. Z., Kuo, W. M., & Zheng, F. L. (2012d). The in-situ crack investigation and the crack classification of concrete piers at TK249+814~TK266+671 of the Taiwan High Speed Rail, final report. Taiwan High Speed Rail Corporation. (in Chinese) (中文:田永銘、鐘翊展、盧育辰、林育民、張顥薰、葉東航、林宏哲、郭偉民、鄭峰麟,高鐵里程TK249+814~TK266+671墩柱混凝土裂縫現況調查及裂縫分級期末報告,台灣高速鐵路股份有限公司)
124. Tien, Y. M., Lu, Y. C., Chung, Y. J., Liu, W. C., Cheng, H. H., Lin, H. C., & Chang, H. H. (2013). Uncertainty of block volumetric proportions and mechanical properties of bimrocks (III). Ministry of Science and Technology, ROC (Taiwan), NSC-99-2221-E-008-060-MY3. (in Chinese) (中文:田永銘、盧育辰、鐘翊展、劉文智、程泓皓、林宏哲、張顥薰,併構岩體積比與力學性質之不確定性(III),中華民國科技部)
125. Tien, Y. M., Lu, Y. C., & Cheng, H. H. (2015a). Variability of mechanical properties of bimrock, The 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, 28 June - 1 July 2015, Paper No. 15-614.
126. Tien, Y. M., Lu, Y. C., & Hsu, K. S. (2015b). Numerical simulation of the shear behaviors of rock joints under the direct shear test, The 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, 28 June - 1 July 2015, Paper No. 15-613.
127. Tien, Y. M., Lu, Y. C., Cheng, H. H., & Hsu, K. S. (2015c). Variability of mechanical properties and geometrical characteristics of discontinuous heterogeneous rock masses (I). Ministry of Science and Technology, ROC (Taiwan), MOST 102-2221-E-008-080. (in Chinese) (中文:田永銘、盧育辰、程泓皓、許凱翔,不連續異質性岩體力學性質與幾何特性之變異性(I),中華民國科技部)
128. Tien, Y. M., Lu, Y. C., & Hsu, C. J. (2015d). Variability of mechanical properties and geometrical characteristics of discontinuous heterogeneous rock masses (II). Ministry of Science and Technology, ROC (Taiwan), MOST 103-2221-E-008-057. (in Chinese) (中文:田永銘、盧育辰、許哲睿,不連續異質性岩體力學性質與幾何特性之變異性(II),中華民國科技部)
129. Tien, Y. M., Wang, C. Y., Huang, W. C., Liu, C. Y., Wang, H. L., Liu, Y. H., Chung, Y. J., Lu, Y. C., Lin, Y. Z., & Ma, C. Y. (2015e). The study of AAR deterioration of highway concrete bridges in eastern Taiwan, 1st year final report. Diretorate General of highways, ROC (Taiwan). (in Chinese) (中文:田永銘、王仲宇、黃偉慶、劉正毓、王顥霖、劉永欣、鐘翊展、盧育辰、林奕佐、馬承砡,臺灣東部公路橋梁混凝土之鹼質粒料反應傷害之研究,第一年期末報告,中華民國交通部公路總局)
130. Tien, Y. M., Lu, Y. C., & Hsu, C. J. (2016a). The uncertainty of fracture intensity measurement in rock mass, The 40th National Conference on Theoretical and Applied Mechanics, Hsinchu, Taiwan. (in Chinese) (中文:田永銘、盧育辰、許哲睿,裂隙程度量測之不確定性,中華民國力學學會第四十屆全國力學會議)
131. Tien, Y. M., Hsu, C. J., Lu, Y. C., Farichah, H., & Chen, C. J. (2016b). Variability of mechanical properties and geometrical characteristics of discontinuous heterogeneous rock masses (III). Ministry of Science and Technology, ROC (Taiwan), MOST 104-2221-E-008-089. (in Chinese) (中文:田永銘、許哲睿、盧育辰、法麗佳、陳虹君,不連續異質性岩體力學性質與幾何特性之變異性(III),中華民國科技部)
132. Tien, Y. M., Lu, Y. C., Hsu, C. J., & Farichah, H. (2017). Geometrical and Mechanical Representative Elementary Volume and Mechanical Properties of Fractured Rock Masses. Ministry of Science and Technology, ROC (Taiwan), MOST-102-2221-E-008-026. (in Chinese) (中文:田永銘、盧育辰、許哲睿、法麗佳,裂隙岩體幾何與力學之表徵單元體及其力學性質,中華民國科技部)
133. Timoshenko, S. P., & Goodier, J. N. (1970). Theory of Elasticity, 3rd ed. New York, McGraw-Hill Book Company Inc.
134. Tsai, W. C. (2003). The fabrication, surface images and mechanical properties of macroscopically isotropic Melanges, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:蔡文傑,巨觀等向性混成岩製作表面影像與力學性質,國立中央大學碩士論文)
135. Tsesarsky, M., Hazan, M., & Gal, E. (2014). Estimating the elastic moduli and isotropy of block inmatrix (bim) rocks by computational homogenization. Engineering Geology, 200, 58-65.
136. Vazaios, I., Farahmand, K., Vlachopoulos, N., & Diederichs, M. S. (2018). Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study. Journal of Rock Mechanics and Geotechnical Engineering. DOI: 10.1016/j.jrmge.2018.01.002.
137. Wackerly, D. D., Mendenhall, W. lll, & Scheaffer, R. L. (2008). Mathematical statistics with applications, (7th ed.). Belmont, CA, USA, Thomson Learning, Inc.
138. Wang, X. (2005), Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces, Doctoral dissertation, Department of Civil & Environmental Engineering, Virginia Polytechnic Institute and State University, VA, USA.
139. Wei, Z. Q., Egger, P., & Descoeudres, F. (1995). Permeability prediction for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences, 32, 251-261.
140. Wu, Q., Kulatilake, P. H. S. W. (2012). REV and its properties on fracture system and mechanical properties and an orthotropic constitutive model for a jointed rock mass in a dam site in China. Computers and Geotechnics, 43, 124-142.
141. Wu, T. H. (2010), Uncertainty in estimation of volumetric block proportion by using scanline method -Analytical solution and demonstrate, Master’s thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:鄔定樺,掃描線法量測體積比之不確定性-解析解及驗證,國立中央大學碩士論文)
142. Xia, J., Gao, W., Hu, R., & Sui, H. (2017). Influence of strength difference between block and matrix on the mechanical property of block-in-matrix soils: An experimental study. Electronic Journal of Geotechnical Engineering, 22, 2411-2426.
143. Xia, L., Zheng, Y., & Yu, Q. (2016). Estimation of the REV size for blockiness of fractured rock masses. Computers and Geotechnic, 76, 83-92.
144. Xu, W. J., Xu, Q., & Hu, R. L. (2011). Study on the shear strength of soil-rock mixture by large scale direct shear test. International Journal of Rock Mechanics & Mining Sciences, 48, 1235-1247.
145. Yang, J. P., Chen, W. Z., Yang, D. S., & Yuan, J. Q. (2015). Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnic, 64, 20-31.
146. Zhang, G. K., & Xu, W. Y. (2008). Analysis of joint network simulation method and REV scale. Rock Soil Mech, 29, 1675-1680.
147. Zhang, W., Chen, J. P., & Liu, C. (2012). Determination of geometrical and structural representative volume elements at the Baihetan Dam site. Rock Mechanics and Rock Engineering, 45, 409-419.
148. Zhao, Y. R. (2014). Determining joint patches of outcrop discontinuities by LiDAR point cloud data and field image, Master’s thesis, Graduate Institute of Applied Geology, National Central University, Taoyuan, Taiwan. (in Chinese) (中文:趙奕然,利用LiDAR點雲及影像資料決定露頭節理結合面之研究,國立中央大學碩士論文)
149. Zhu, D. L. (2003), Estimation of REV and deformation and strength of jointed rock masses, Dissertation, Chinese Academy of sciences, Wuhan.
指導教授 田永銘、莊長賢
(Yong-Ming Tien、Charng-Hsein Juan)
審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明