博碩士論文 105322040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.144.113.233
姓名 許家盛(Chia-Sheng Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討以微生物與化學方法進行碳酸鈣沉澱改善 砂土力學性質之效益
(The Effect on the Mechanical Properties of Sand Improved by Using Biotechnology and Chemistry Methods to Produce CaCO3 Precipitation)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 回填與緩衝材料之動態強度★ 砂質土壤中柔性擋土牆在動態載重下的行為
★ Effect of Vertical Drain Methods on The Soil Liquefaction★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake
★ 微生物膠結作用對砂質土壤性質的影響★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策
★ 土壤液化引致側向滑移對樁基礎之影響及其對策★ 挖掘機鏟斗上土壤黏附問題的基礎研究
★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應
★ 應用時域反射法於地層下陷監測之改善研發★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微生物引致碳酸鈣沉澱(Microbial induced calcite precipitation, MICP)提升砂土力學性質為近年發展的地盤改良工法之一,於砂土中添加微生物與營養液,透過生物新陳代謝作用析出碳酸鈣結晶體,該結晶體會沉澱於砂土孔隙,能有效地膠結砂土顆粒與填塞孔隙體積,可提升鬆砂土壤之剪力強度並降低滲透係數。此外,為加速呈現碳酸鈣沉澱之效果,以化學合成(碳酸鈉與氯化鈣混和溶液)方式模擬MICP改良後之狀態,並加以驗證。本研究先進行直接剪力試驗與無圍壓縮試驗,瞭解MICP與化學方法膠結土壤顆粒對土壤剪力強度改善程度,並由定水頭試驗測得改良前、後滲透係數差異,評估碳酸鈣結晶體填塞孔隙體積之有效性。最後,以離心模型試驗探討飽和鬆砂土層透過化學改良後的抗液化特性及其土層動態反應,評估碳酸鈣沉澱工法於現地施作之可行性。
試驗結果顯示,(1)MICP改良容易受到溫度及濕度等環境因素影響,但化學方法則能在短時間內完成碳酸鈣沉澱反應;(2)假單胞桿菌經由尿素?催化作用後,在高濃度營養源條件下較能促進代謝反應,砂土試體在未改良前之凝聚力與摩擦角分別為0.8 kPa與35.0度,完全固化後則提升至24.2 kPa與38.2度,無圍壓縮強度達335 kPa,而由化學模擬亦能得到相近的試驗結果;(3)MICP與化學合成方法對砂土滲透係數改良效果皆不顯著,在營養液與模擬濃度1 M條件下,最大降低幅度僅為未改良前的0.85與0.81倍;(4)由離心模型動態試驗結果得知,碳酸鈣沉澱能固化飽和砂土層的改良範圍,受震時之加速度振幅比未改良區大,超額孔隙水壓比僅在初始振動階段上升至0.8後即快速消散,地表沉陷量小於未改良區,改良範圍於受震前後之土層剪力波速差異變化較小。
摘要(英) Microbial induced calcite precipitation (MICP) is one of the ground improvement methods that can increase the mechanical properties of soil in recent year. By adding the bacteria and nutrient solution, the calcium carbonate crystals will be produced through the metabolism of microorganisms. The crystals will precipitate in the pores of sand, which can effectively cement the sand particles and fill the void volume; it can increase the shear strength and reduce the permeability. Also, in order to enhance the rate of calcite precipitation, using chemistry method simulates the specimen conditions improved by MICP method by adding Na2CO3-CaCl2 mixed liquid. Therefore, this study will conduct the direct shear test and the unconfined compression test to understand the performance of cementation in MICP and chemistry method. Also, from the constant head test, it can compare the difference in permeability before and after improvement, and evaluate the effectiveness of clogging by calcium carbonate crystals. Finally, using the centrifuge modeling test can know the liquefaction resistance and dynamic response before and after improvement; evaluate the feasibility of the calcium carbonate precipitation method to be applied in-situ construction.
According to the test results, (1) the MICP method may be affected by environmental conditions, including temperature or humidity, but the chemistry method can completely finish reaction in rapid time; (2) Pseudomonas sp can enhance the recreation of metabolism after ureolysis as increasing the nutrient concentration, the cohesion and friction angle of the specimens after solidified are increasing to 24.2 kPa and 38.2 degrees, the unconfined compression strength is 335 kPa. The chemistry method can also get almost the same or better test results than MICP method. (3) However, the permeability does not decrease obvious by those two methods, and the reduction rate are 0.85 and 0.81 respectively as compared with unimproved at 1 M of nutrients. (4) From the centrifuge modeling test results, calcium carbonate precipitation can enhance the effect of solidification on the improved area; the acceleration amplitude is higher than unimproved zone, and the excess pore water pressure ratio increases only to 0.8 at initial period and dissipates quickly. The unimproved zone has the larger surface settlement, thus it means that the shear wave velocity of improved area has the less difference as compared with before and after the seismic loading.
關鍵字(中) ★ 微生物引致碳酸鈣沉澱
★ 膠結填塞
★ 地盤改良
★ 化學合成碳酸鈣沉澱
★ 離心模型試驗
★ 土壤液化
關鍵字(英) ★ microbial induced calcite precipitation
★ cementation and clogging
★ ground improvement
★ chemistry method
★ centrifuge modeling
★ liquefaction
論文目次 摘要 I
ABSTRACT II
Table of Contents IV
List of Tables VII
List of Figures IX
Chapter 1: Introduction 1
1-1 Research motivation and purpose 1
1-2 Research methods 2
1-3 Concepts of research 3
Chapter 2: Literature review 5
2-1 Growth mechanism of microorganisms in the natural environment 5
2-2 Microbial Induced Calcite Precipitation, MICP 6
2-3 The bio-cementation and bio-clogging of microorganisms 7
2-4 The cause and disaster of soil liquefaction 8
2-4-1 The mechanism of liquefaction 8
2-4-2 The disaster caused by soil liquefaction 8
2-5 The mechanic properties of sand improved by microorganisms 9
2-5-1 The laboratory tests 9
2-5-2 The large-scale test 12
2-6 Centrifuge modeling principle 14
2-6-1 Scaling law 14
2-6-2 Limitation of centrifuge physical modeling 15
Chapter 3: Test methods and arrangements 34
3-1 The properties of No. 306 silicon sand 34
3-2 The properties of Pseudomonas sp 34
3-3 The tests equipment 35
3-3-1 Direct shear test instrument and culture mold 35
3-3-2 Unconfined compression test instrument and culture mold 35
3-3-3 Constant head test instrument and culture mold 35
3-3-4 Geotechnical centrifuge 36
3-3-5 Shaking table and Data acquisition system 36
3-3-6 Rigid container 37
3-3-7 High-frequency electronic transducers 37
3-4 Tests preparation and processes 38
3-4-1 Test Bacterial Culture 38
3-4-2 Specimens preparation for the direct shear and constant head test 39
3-4-3 Specimens preparation for the unconfined compression test 40
3-4-4 Specimens preparation for the centrifuge model test 40
3-5 Tests arrangement 41
3-5-1 Direct shear test and constant head test 41
3-5-2 Unconfined compression test 43
3-5-3 Centrifuge model test 44
Chapter 4: Test results 63
4-1 Direct shear test results 64
4-1-1 MICP method: culture bacteria by nutrient type-1 64
4-1-2 MICP method: Immersion method (nutrient type-1) 65
4-1-3 MICP method: Pump system (nutrient type-1) 65
4-1-4 MICP method at initial improvement condition: use pump system to culture bacteria by nutrient type-2 66
4-1-5 MICP method at fully solidification condition: use pump system to culture bacteria by nutrient type-2 67
4-1-6 Chemistry method at initial improvement condition 67
4-1-7 Chemistry method at fully solidification condition 68
4-2 Unconfined compression test results 68
4-2-1 MICP method at initial improvement condition 68
4-2-2 MICP method at fully solidification condition 69
4-2-3 Chemistry method at initial improvement condition 70
4-2-4 Chemistry method at fully solidification condition 71
4-3 Constant head test results 71
4-4 Comparison of laboratory test 72
4-4-1 Direct shear test 73
4-4-2 Unconfined compression test 73
4-4-3 Constant head test 74
4-4-4 The conclusions of laboratory tests 75
4-5 Centrifuge modeling test result 75
4-5-1 The response of acceleration history 76
4-5-2 The response of excess pore water pressure 77
4-5-3 Comparison 77
Chapter 5: Conclusions and Recommendations 120
5-1 Conclusions 120
5-2 Recommendations 121
Reference 122
參考文獻 1. 簡道南,「認識土壤結構中的重要成員」,台肥季刊,第46卷,第4期 (2005) 。
2. Mitchell, J. K., and Santamarina, J. C., “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 131, No. 10, pp. 1222-1233 (2005).
3. 卓雨璇,「微生物式之碳酸鈣膠結效應對粒狀土壤地質改良之研探」,碩士論文,國立臺灣大學工學院土木工程研究所,台北 (2011)。
4. Ivanov, V., and Chu, J., “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.’’ Environmental Science and Bio/Technology, Vol. 7, No. 2, pp. 139-153 (2008).
5. 內政部營建署,「建築物基礎構造設計規範第十章」,2011年10月。
6. 陳銘鴻,「土壤液化成因、災害與復健」,台灣之活動斷層與地震災害研討會,107-123頁 (2002)。
7. Dejong, J.T., Frizges, M.B., and Nusslein. K. “Microbially Induced Cementation to Control Sand Response to Undrained Shear.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 11, pp. 1381-1392 (2006).
8. Yuliani, E., Handayani, M., and Haryani, A.D., “Study on the Effect of Decreasing Permeability and Increasing Shear Strength of Sandy Beach Soil and River Soil by Using Exopolysaccharide Biopolymer,” Proceedings of The 1st Young Scientist International Conference of Water Resources Development an Environmental Protection, Malang, Indonesia, pp. 1-8 (2015).
9. Chou, C.W., Seagren, E.A., Aydilek, A.H., and Lai, M., “Biocalcification of Sand through Ureolysis.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 137, No. 12, pp. 1179-1189 (2011).
10. Montoya, B.M., and DeJong, J.T., “Stress-Strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 141, No. 6, pp. 191-210 (2015).
11. 崔明娟、鄭俊傑、章榮軍、苗晨曦和張君潔,「化學處理方式對微生物固化砂土強度影響研究」,岩土力學,第36卷,第1期,392-396頁 (2015)。
12. Liang, C., and Ralf, C.R., “Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation.” Geomicribiology Journal, Vol. 31, No. 5, pp. 396-406 (2014).
13. Atticus, D., Liang, C., Mohamed, A.S., and Ralf, C.R., “Calcium Carbonate Induced Precipitation for Soil Improvement by Urea Hydrolysing Bacteria.” The 2012 World Congress on Advances in Civil, Environmental, and Materials Research, Seoul, Korea, pp. 26-30 (2012).
14. Simatupang, M., Kosaka, Y., and Okamura, M., “Effects of Degrees of Saturation on Liquefaction Resistant of Sand Improved with Enzimatic Calcite Precipitation.” Proceedings of the 2nd Makassar International Conference on Civil Engineering, Makassar, Indonesia (2015).
15. Yasuhara, H., Neupane, D., Hayashi, K., and Okamura, M., “Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation.” Soils and Foundations, The Japanese Geotechnical Society, Vol. 52, No. 3, pp. 539-549 (2012).
16. Neupane, D., Yasuhara, H., Kinoshita, N., and Unno, T., “Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-Strengthening Technique.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 12, pp. 2201-2211 (2013).
17. 彭劼、何想、劉志明、馮清鵬、何稼,「低溫條件下微生物誘導碳酸鈣沉積加固土體的試驗研究」,岩土工程學報,第38卷,第10期,1769-1774頁 (2016)。
18. He, J., Chu, J., and Ivanov, V., “Mitigation of liquefaction of saturated sand using biogas.” Geotechnique, Vol. 63, No. 4, pp.267-275 (2013).
19. 程曉輝、麻強、楊鑽、張志超、李萌,「微生物灌漿加固液化砂土地基的動力反應研究」,岩土工程學報,第35卷,第5期,1486-1495頁 (2013)。
20. Montoya, B.M., Dejong, J.T., and Boulanger, R.W., “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Geotechnique, Vol. 63, No. 4, pp.302-312 (2013).
21. 楊光富,魏雲林,「假單胞桿菌研究現狀及應用前景」,生物技術通報,第35卷,第1期,37-49頁 (2011)。
22. Chang, D.H., Rhee, M.S., Kim, J.S., Lee, Y., Park, M.Y., Kim, H., Lee, S.G., and Kim, B.C., “Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea.” Antonie van Leeuwenhoek Journal of Microbiology, Vol. 109, No. 11, pp.1433-1446 (2016).

23. Whiffin, V.S., van Paassen, L.A., and Harkes, M.P., “Microbial Carbonate Precipitation as a Soil Improvement Technique.” Geomicrobiology Journal, No. 24, pp.417-423 (2007).
24. Alvarado, D., “BIO-Mediated Soil Improvement: Cementation of Unsaturated Sand Samples.” Arizona, U.S.A, pp.1-18.
25. Handayani, M., “Effectivity of Biological Cement’s Application to Sandy Soil,” Master Dissertation, Department of Civil Engineering, National Central University, Taoyuan, Taiwan (2017).
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明