博碩士論文 105324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.188.130.151
姓名 陳馨樺(Hsin-Hua Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 非典型浸潤表面與微粒爬升之研究
(Atypical Liquid-Infused Surface and Meniscus-Induced Motion of Tiny Objects)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為兩大部分,分別為非典型浸潤表面與微粒在彎曲液面之爬升行為。
第一部分-非典型浸潤表面
非典型液體浸潤表面(Atypical liquid-infused surface,ALIS)在製備上有簡易、快速的優勢,而且具有非常高的氣泡接觸角及液滴接觸角(> 160o)、極低的接觸角遲滯(< 2o)性質。將兩種多孔性基材:超親水奈米過濾膜與拉伸後的聚四氟乙烯(polytetrafluoroethylene,PTFE)膜,分別置於水中與正癸烷中,水浸潤之奈米過濾膜為水浸潤表面(water-infused surface);正癸烷浸潤之聚四氟乙烯膜為液態烷類浸潤表面(alkane-infused surface)。體積2 L的微小液滴或氣泡在上述兩種僅傾斜2o的浸潤表面上即可平順移動,而且可以觀察到液滴在液態烷類浸潤表面上滾動的行為,與一般的超疏水表面相同。界面活性劑可以用來降低界面張力,一般來說會降低超疏水表面的接觸角,同時增加接觸角遲滯現象,但在非典型液體浸潤表面上,界面活性劑對潤濕行為的影響幾乎可以忽略。在界面活性劑的加入下,流體在表面上更容易滑移,但也會因為界面活性劑的表面再活化(surface remobilization)現象,造成流體終端速度在不同界面活性劑濃度下有不同的變化。此外,非典型液體浸潤表面還具備一定的自我修復的能力,於浸潤表面施加一定程度的物理刮痕後,依然保有流體在表面上低傾斜角即可滑移的特性,在浸潤液體中耐用程度相當高。
第二部分-微粒在彎曲液面爬升行為之研究
自然界中,一些水生昆蟲發展出一套利用表面張力的方式上岸,稱為彎月液面爬升,他們將身體固定成特殊姿勢使自己爬上彎月液面。本研究針對微粒形狀與彎月液面形態對爬升行為之影響進行分析。釐米級的片狀微粒使用塗黑之PET片剪製而成,形狀分別為三角形、正方形與長方形;而三種不同形態的彎月液面,包含:懸垂液滴(Pendant drop)、液橋(Liquid bridge)、座滴(Sessile drop)。結果顯示:因為重力的影響大過毛細力,使正方形與三角形之PET片傾向沿著液面滑落並停留於彎月液面底端;然而,長方形PET片卻可以藉由垂直方向的表面張力差爬上彎月液面且其爬升的末位置會在液面曲率接近零的地方,此時,向上的毛細力與重力可以達成平衡。最後,以更細微的片狀粉末置於彎月液面,可以觀察到隨著片狀粉末不斷補充,利用少量的片狀粉末即可迅速包覆整個彎月液面。
摘要(英) This study contains two topics: atypical liquid-infused surface and meniscus-induced motion of tiny objects.
Part I - Atypical liquid-infused surface
Atypical liquid-infused surfaces (ALIS) which demonstrate very high bubble/drop angles (> 160o) and ultra-low contact angle hysteresis (CAH < 2o) have been facilely fabricated. Porous hydrophilic nano-filtration membrane and hydrophobic stretched polytetrafluoroethylene film were submerged in water (water-infused surface) and in decane (alkane-infused surface), respectively. The air bubble/liquid drop (2 L) can move with ease on ALIS in submerged conditions at a low tilted angle of 2o. The rolling motion of a water drop is observed, similar to its motion on superhydrophobic surface. It is known that the addition of surfactants can reduce the interfacial tensions of water drop and intensifies CAH of water drop on superhydrophobic surfaces. But it has negligible effects on wetting properties of ALIS. In the presence of surfactant, the fluid particle moves readily on ALIS but its velocity exhibits a non-monotonic variation with surfactant concentrations due to surface remobilization. Mechanically damaged ALIS demonstrates the self-healing ability of its wetting properties and preserves the particle motion even at low inclination.
Part II - Meniscus-induced motion of tiny objects
In nature, some water-walking insects have developed the meniscus-climbing technique depended on surface tension. They ascended by fixing their body posture without moving their legs. In this work, the effects of floating particle shape and meniscus curvature on the meniscus-ascending behavior are explored. The flat particles with millimeter-size are made of polyethylene terephthalate (PET) sheets, and their shapes vary from triangle, square, to rectangle. Three types of menisci are considered, including pendant drop, liquid bridge, and sessile drop. For particles with triangular and square shapes, they tend to slide down and stay at the bottom of menisci because the gravitational force wins over the capillary force. However, the rectangular sheet is able to climb the meniscus surface due to uneven lateral capillary force. The meniscus curvature of its equilibrium position is close to zero, but the upward capillary force balances the particle weight. Next, we replace PET sheet with smaller flaky aluminium powder and put it on the surface of menisci. The result show the powder will spread and cover the meniscus rapidly.
關鍵字(中) ★ 液態浸潤表面 關鍵字(英) ★ Liquid-Infused Surface
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xv
第一部分–非典型浸潤表面之研究 1
第一章 緒論 2
1-1前言 2
1-2文獻回顧 3
1-3研究動機與目的 6
第二章 基本原理 8
2-1 潤濕現象與接觸角 8
2-1-1楊氏方程式(Young’s equation) 9
2-1-2溫佐方程式(Wenzel’s equation) 10
2-1-3卡西方程式(Cassie’s equation) 11
2-2接觸角遲滯現象與成因 12
2-3接觸角遲滯的測量方法 15
2-3-1微量針頭法(Needle-syringe method) 15
2-3-2蒸發法(Evaporation method) 15
2-3-3傾斜法(Inclined plate method) 16
2-3-4威廉米平板法(Wilhelmy plate method) 17
第三章 實驗介紹 18
3-1實驗藥品與材料 18
3-2實驗儀器 18
3-2-1影像式接觸角量測儀 18
3-2-2巨觀放大顯微量測系統 19
3-3實驗方法 20
3-3-1非典型液體浸潤表面的製備 20
3-3-2觀察氣泡與液滴的潤濕性質及運動行為 21
第四章 結果與討論 23
4-1表面潤濕性質及接觸角遲滯現象 23
4-2界面活性劑對於表面潤濕行為的影響 29
4-3界面活性劑之再活化現象 32
4-4表面自我修復機制 38
第五章 結論 42
第六章 參考文獻 43
第二部分-微粒在彎曲液面爬升行為之研究 46
第七章 緒論 47
7-1前言 47
7-2文獻回顧 49
7-3研究動機與目的 51
第八章 基本原理 53
8-1表面張力的成因 53
8-2表面張力的量測法 53
8-2-1毛細管上升法 53
8-2-2鉑金環法 54
8-2-3鉑金板法 55
8-2-4懸滴法 56
第九章 實驗介紹 58
9-1實驗藥品材料 58
9-2實驗儀器 58
9-1-1高速取像光學介面與流變性質量測模組 58
9-1-2光學顯微鏡 59
9-2-2掃描式電子顯微鏡 60
9-3實驗方法 62
第十章 結果與討論 64
10-1微粒形狀之影響 64
10-2彎曲液面形態之影響 67
10-2-1懸垂液滴 68
10-2-2液橋 69
10-2-3座滴 72
10-3片狀鋁粉末之自包覆行為 75
第十一章 結論 80
第十二章 參考文獻 81
參考文獻 Part I:
[1]R. Seemann, M. Brinkmann, T. Pfohl and S. Herminghaus, “Droplet based microfluidics”, Rep. Prog. Phys., 75, pp-41, (2012).
[2]L. Shang, Y. Cheng, Y. Zhao, “Emerging Droplet Microfluidics”, Chem. Rev., 117, 7964-8040, (2017).
[3]T. S. Kaminski, P. Garstecki, “Controlled droplet microfluidic systems for multistep chemical and biological assays”,Chem. Soc. Rev., 46, 6210-6226 (2017).
[4]S. Nishimoto, B. Bhushan, “Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity”, RSC Adv., 3, 671–690, (2013).
[5]B. Zhao, J. S. Moore, D. J. Beebe, “Surface-Directed Liquid Flow Inside Microchannels”, Science, 291, 1023-1026 (2001).
[6]W. Hilbera, B. Jakoby, “Controlled liquid flow in a microfluidic network with pressure sensitive valves based on polydimethylsiloxane (PDMS) / neodymium (NdFeB) composites” Procedia Engineering, 47, 382-385 (2012).
[7]B. Subramanian, N Kim, W. Lee, D. A. Spivak, D. E. Nikitopouos, R. L. McCarley, S. A. Soper, “Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets” , LANGMUIR, 27, 7949-7957, (2011).
[8]H. F. Bohn, W. Federle, “Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface”, PNAS, 101, 14138-14143, (2004).
[9]T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, “Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity”, Nature, 477, 443-447, (2011).
[10]J. H. Guan, G. G. Wells, B. Xu, G. McHale, “Evaporation of sessile droplets on slippery liquid-infused porous surfaces (SLIPS)”, Langmuir, 31, 11781−11789, (2015).
[11]S. Sett, X. Yan, G. Barac, L. W. Bolton, and N. Miljkovic, “Surface Functionalization for a Non-textured Liquid Infused Surface with Enhanced Lifetime”, ACS Appl. Mater. Interfaces, 9, 36400−36408, (2017).
[12]C. C. Chang, C. J. Wu, Y. J. Sheng, H. K. Tsao, “Anti-smudge behavior of facilely fabricated liquid-infused surfaces with extremely low contact angle hysteresis property.” RSC. Adv, 6, 19214-19222, (2016).
[13]Z. Wang, L. Heng, L. Jiang, “Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces”, J MATER CHEM A, 6. 3414-3421, (2018).
[14]M. J. Rosen, “Surfactants and Interfacial phenomena”, John Wiley & Sons, Inc., 2004, pp. i–xiii.
[15]J. C. Baret, “Surfactants in droplet-based microfluidics.” Lab Chip, 2012, 12, 422-433, (2012).
[16]R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[17]A. Cassie, S. Baxter, “Wettability of porous surfaces.”, Trans. Faraday Soc. 40, 546-551 (1944).
[18]J. F. Joanny, P. G. de Gennes, “A model for contact angle hysteresis”, Journal of Chemical Physics, 81, 552-562, (1984)
[19]S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, “Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning”, Langmuir, 27, 6890-6896, (2011).
[20]N. Luang, N. Dechabumphena, C. Saiwan, J. F. Scamehorn, , “Contact angle of surfactant solutions on precipitated surfactant surfaces”, J. Surf. Deter., 4, 367-373, (2001).
[21]F. M. Chang, Y. J. Sheng, H. Chen, H. K. Tsao, “From superhydrophobic to superhydrophilic surfaces tuned by surfactant solutions”, Appl. Phys. Lett., 91, 094108, (2007).
[22]E. L. Michor, B. S. Ponto, J. C. Berg, “Effects of reverse micellar structure on the particle charging capabilities of the span surfactant series”, Langmuir, 32, 10328-10333, (2016).
[23]K. J. Stebe, C. Maldarelli, “Remobilizing surfactant retarded fluid particle interfaces”, J COLLOID INTERF, 163, 177-189, (1994).
Part II:
[1]N. Cabeo, “Philosophia Magnetica”, Ferrara, lib. II, cap. 20 (1629).
[2]J. A. Segner, Comment. Soc. Reg. Gott., 1, 301 (1751).
[3]T. Young, Collected work, 1, 418 (1805).
[4]D. L. Hu, J. W. M. Bush, “Meniscus-climbing insects”, Nature, 437, 733-736 (2005).
[5]J. Voise, M. Schindler, J. Casas, E. Raphael, “Capillary-based static self-assembly in higher organisms”, J. R. Soc. Interface, 8, 1357-1366 (2011).
[6]V. M. Ortega-Jimenez, S. Arriaga-Ramirez, R. Dudley, “Meniscus ascent by thrips (Thysanoptera)”, Biol. Lett, 12, 1-4 (2016).
[7]S. Li, J. Liu, J. Hou, G. Zhang, “Meniscus-induced motion of oil droplets”, Colloid Surf. A-Physicochem. Eng. Asp. , 469, 252-255 (2015).
[8]J. Liu, S. Li, J. Hou, “Near-post meniscus-induced migration and assembly of bubbles”, Soft matter, 12, 2221-2230 (2016).
[9]X. Dou, S. Li, and J. Liu, “Zero curvature-surface driven small objects”, Appl. Phys., 111, 081602-1-4 (2017).
[10]Y. Yu, M. Guo, X. Li, Q. S. Zhang, “Meniscus-Climbing Behavior and Its Minimum Free-Energy Mechanism”, Langmuir, 23, 10546-10550 (2007).
[11]C. C. Chang, C. J. Wu, Y. J. Sheng, and H. K. Tsao, “Spontaneous self-coating of a water drop by flaky copper powders: critical role of the particle shape”, Soft matter, 11, 4469-4475 (2015).
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2018-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明