參考文獻 |
[1] Poizot P, Dolhem F. “Clean Energy New Deal for a Sustainable World: from Non-CO2 Generating Energy Sources to Greener Electrochemical Storage Devices”, Energy &
Environmental Science, Vol 4, 2003-19, 2011.
[2] Scrosati B, Garche J. “Lithium Batteries: Status, Prospects and Future”, Journal of Power Sources, Vol 195, 2419-30, 2010.
[3] Dunn B, Kamath H, Tarascon J-M. “Electrical Energy Storage for the Grid: A Battery of Choices”, Science, Vol 334, 928-35, 2011.
[4] Tarascon J-M, Armand M. “Issues and Challenges Facing Rechargeable Lithium Batteries”, Nature, Vol 414, 359-67, 2001.
[5] Tarascon J-M, Armand M. "Issues and Challenges Facing Rechargeable Lithium Batteries". Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review
Articles from Nature Publishing Group, p. 171-9, World Scientific; 2011
[6] Nishi Y. “The Dawn of Lithium-Ion Batteries”, The Electrochemical Society Interface, Vol 25, 71-4, 2016.
[7] Yamaki J-i, Tobishima S-i, Hayashi K, Saito K, Nemoto Y, Arakawa M. “A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte”, Journal of Power Sources, Vol 74, 219-27, 1998.
[8] Besenhard J, Hess M, Komenda P. “Dimensionally Stable Li-Alloy Electrodes for Secondary Batteries”, Solid State Ionics, Vol 40, 525-9, 1990.
[9] Nitta N, Wu F, Lee JT, Yushin G. “Li-Ion Battery Materials: Present and Future”, Materials Today, Vol 18, 252-64, 2015.
[10] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. “Challenges in the Development of Advanced Li-Ion Batteries: A Review”, Energy & Environmental Science, Vol 4, 3243-62, 2011.
[11] Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H. “Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase TiO2
Electrode”, Journal of Power Sources, Vol 166, 239-43, 2007.
[12] Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, et al. “Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review”, Journal of Power Sources, Vol 192, 588-98, 2009.
[13] Ren H, Yu R, Wang J, Jin Q, Yang M, Mao D, et al. “Multishelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries”, Nano Letters, Vol 14, 6679-84, 2014.
[14] Liu H, Li W, Shen D, Zhao D, Wang G. “Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes”, Journal
of the American Chemical Society, Vol 137, 13161-6, 2015.
[15] Zhang Z, Zhou Z, Nie S, Wang H, Peng H, Li G, et al. “Flower-Like Hydrogenated TiO2(B) Nanostructures as Anode Materials for High-Performance Lithium Ion Batteries”, Journal of Power Sources, Vol 267, 388-93, 2014.
[16] Zheng J, Liu Y, Ji G, Zhang P, Cao X, Wang B, et al. “Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries”, ACS applied materials & interfaces, Vol 7, 23431-8, 2015.
[17] Lu Z, Yip CT, Wang L, Huang H, Zhou L. “Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries”, ChemPlusChem, Vol 77, 991-1000, 2012.
[18] Hoffmann MR, Martin ST, Choi W, Bahnemann DW. “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, Vol 95, 69-96, 1995.
[19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, Vol 293, 269-71, 2001.
[20] O′regan B, Grätzel M. “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, Vol 353, 737, 1991.
[21] Bach U, Lupo D, Comte P, Moser J, Weissörtel F, Salbeck J, et al. “Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, Vol 395, 583, 1998.
[22] Horn M, Schwebdtfeger C, Meagher E. “Refinement of the Structure of Anatase at Several Temperatures”, Zeitschrift für Kristallographie-Crystalline Materials, Vol 136, 273-81, 1972.
[23] Hu YS, Kienle L, Guo YG, Maier J. “High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2”, Advanced Materials, Vol 18, 1421-6, 2006.
[24] Kavan L, Grätzel M, Gilbert S, Klemenz C, Scheel H. “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase”, Journal of the American Chemical Society, Vol 118, 6716-23, 1996.
[25] Marchand R, Brohan L, Tournoux M. “TiO2 (B) a New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17”, Materials Research Bulletin, Vol 15, 1129-33, 1980.
[26] Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M. “Pseudocapacitive Lithium Storage in TiO2(B)”, Chemistry of Materials, Vol 17, 1248-55, 2005.
[27] Liu S, Wang Z, Yu C, Wu HB, Wang G, Dong Q, et al. “A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life”, Advanced Materials, Vol 25, 3462-7, 2013.
[28] Arrouvel C, Parker SC, Islam MS. “Lithium Insertion and Transport in the TiO2−B Anode Material: A Computational Study”, Chemistry of Materials, Vol 21, 4778-83, 2009.
[29] Liu S, Jia H, Han L, Wang J, Gao P, Xu D, et al. “Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries”, Advanced Materials, Vol 24, 3201-4, 2012.
[30] Wagemaker M, Borghols WJ, Mulder FM. “Large Impact of Particle Size on Insertion Reactions. A Case for Anatase LixTiO2”, Journal of the American Chemical Society, Vol 129, 4323-7, 2007.
[31] Han C, Yang D, Yang Y, Jiang B, He Y, Wang M, et al. “Hollow Titanium Dioxide Spheres as Anode Material for Lithium Ion Battery with Largely Improved Rate Stability and Cycle Performance by Suppressing the Formation of Solid Electrolyte Interface Layer”, Journal of Materials Chemistry A, Vol 3, 13340-9, 2015.
[32] Armstrong AR, Armstrong G, Canales J, García R, Bruce PG. “Lithium‐Ion Intercalation into TiO2‐B Nanowires”, Advanced Materials, Vol 17, 862-5, 2005.
[33] Kim K-T, Yu C-Y, Kim S-J, Sun Y-K, Myung S-T. “Carbon-Coated Anatase Titania as a
High Rate Anode for Lithium Batteries”, Journal of Power Sources, Vol 281, 362-9, 2015.
[34] Deng D, Kim MG, Lee JY, Cho J. “Green Energy Storage Materials: Nanostructured TiO2
and Sn-Based Anodes for Lithium-Ion Batteries”, Energy & Environmental Science, Vol 2, 818- 37, 2009.
[35] Etacheri V, Yourey JE, Bartlett BM. “Chemically Bonded TiO2–Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries”, Acs Nano, Vol 8, 1491-9, 2014.
[36] Qiu J, Li S, Gray E, Liu H, Gu Q-F, Sun C, et al. “Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries”, The Journal of Physical Chemistry C, Vol 118, 8824-30, 2014.
[37] Koudriachova MV, Harrison NM, de Leeuw SW. “Density-Functional Simulations of Lithium Intercalation in Rutile”, Physical Review B, Vol 65, 235423, 2002.
[38] Morgan BJ, Watson GW. “GGA+U Description of Lithium Intercalation into Anatase TiO2”, Physical Review B, Vol 82, 144119, 2010.
[39] Legrain F, Malyi O, Manzhos S. “Insertion Energetics of Lithium, Sodium, and Magnesium in Crystalline and Amorphous Titanium Dioxide: A Comparative First-Principles Study”, Journal of Power Sources, Vol 278, 197-202, 2015.
[40] Dawson J, Robertson J. “Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B)”, The Journal of Physical Chemistry C, Vol 120, 22910-7, 2016.
[41] Clark S, Robertson J, Lany S, Zunger A. “Intrinsic Defects in ZnO Calculated by Screened Exchange and Hybrid Density Functionals”, Physical Review B, Vol 81, 115311, 2010.
[42] Clark SJ, Robertson J. “Screened Exchange Density Functional Applied to Solids”, Physical Review B, Vol 82, 085208, 2010.
[43] Persson C, Ferreira da Silva A. “Strong Polaronic Effects on Rutile TiO2 Electronic Band Edges”, Applied Physics Letters, Vol 86, 231912, 2005.
[44] Hu Z, Metiu H. “Choice of U for DFT+ U Calculations for Titanium Oxides”, The Journal of Physical Chemistry C, Vol 115, 5841-5, 2011.
[45] German E, Faccio R, Mombrú AW. “A DFT+ U Study on Structural, Electronic, Vibrational and Thermodynamic Properties of TiO2 Polymorphs and Hydrogen Titanate: Tuning the Hubbard ‘U-term’”, Journal of Physics Communications, Vol 1, 055006, 2017.
[46] Deskins NA, Dupuis M. “Electron Transport via Polaron Hopping in Bulk TiO2 : A Density Functional Theory Characterization”, Physical Review B, Vol 75, 195212, 2007.
[47] Kong L-M, Zhu B-L, Pang X-Y, Wang G-C. “First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries”, Acta Physico-Chimica Sinica, Vol 32, 656-64, 2016.
[48] Sushko PV, Rosso KM, Abarenkov IV. “Interaction of Intercalated Li+ Ions with Oxygen Vacancies in Rutile TiO2”, ECS Transactions, Vol 28, 299-306, 2010.
[49] Hohenberg P, Kohn W. “Inhomogeneous Electron Gas”, Physical Review, Vol 136, B864, 1964.
[50] Kohn W, Sham L. “Quantum Density Oscillations in an Inhomogeneous Electron Gas”, Physical Review, Vol 137, A1697, 1965.
[51] Blöchl PE. “Projector Augmented-Wave Method”, Physical Review B, Vol 50, 17953, 1994.
[52] Anisimov VI, Zaanen J, Andersen OK. “Band Theory and Mott Insulators: Hubbard U Instead of Stoner I”, Physical Review B, Vol 44, 943, 1991.
[53] Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, et al. "First Principles Methods Using CASTEP", Zeitschrift für Kristallographie – Crystalline Materials, Vol 220, 567, 2005.
[54] Burdett JK, Hughbanks T, Miller GJ, Richardson Jr JW, Smith JV. “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of the American Chemical Society, Vol 109, 3639-46, 1987.
[55] Feist TP, Davies PK. “The Soft Chemical Synthesis of TiO2(B) from Layered Titanates”, Journal of Solid State Chemistry, Vol 101, 275-95, 1992.
[56] Panduwinata D, Gale JD. “A First Principles Investigation of Lithium Intercalation in TiO2-B”, Journal of Materials Chemistry, Vol 19, 3931-40, 2009.
[57] Morgan BJ, Madden PA. “Lithium Intercalation into TiO2(B): A Comparison of LDA,GGA, and GGA+U Density Functional Calculations”, Physical Review B, Vol 86, 035147,2012.
[58] Armstrong AR, Arrouvel C, Gentili V, Parker SC, Islam MS, Bruce PG. “Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study”, Chemistry of Materials, Vol 22, 6426-32, 2010.
[59] Koudriachova MV, Harrison NM, de Leeuw SW. “Diffusion of Li-Ions in Rutile. An ab Initio Study”, Solid State Ionics, Vol 157, 35-8, 2003.
[60] Henkelman G, Uberuaga BP, Jónsson H. “A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths”, The Journal of chemical physics, Vol
113, 9901-4, 2000.
[61] Zachau-Christiansen B, West K, Jacobsen T, Atlung S. “Lithium Insertion in Different TiO2 Modifications”, Solid State Ionics, Vol 28, 1176-82, 1988.
[62] Meng Q, Wang T, Liu E, Ma X, Ge Q, Gong J. “Understanding Electronic and Optical Properties of Anatase TiO2 Photocatalysts Co-Doped with Nitrogen and Transition Metals”, Physical Chemistry Chemical Physics, Vol 15, 9549-61, 2013.
[63] Gao H, Li X, Lv J, Liu G. “Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites”, The Journal of Physical Chemistry C, Vol 117, 16022-7, 2013.
[64] Betz G, Tributsch H, Marchand R. “Hydrogen Insertion (Intercalation) and Light Induced Proton Exchange at TiO2(B)-Electrodes”, Journal of Applied Electrochemistry, Vol 14, 315-22,1984. |