博碩士論文 105324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.119.123.10
姓名 張賀堯(HEYAO CHANG)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討菇包木屑與雞糞共發酵生產沼氣之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 菇類是台灣大量食用的菌種之一,生產菇類的同時也產生了大量的廢棄菇包木屑,傳統上多半是利用堆肥的方式來處理,是能夠有效增加地力的方式,然而廢棄菇包木屑數量龐大,大半還是處於隨意棄置的狀態,過多時則以露天燃燒來處理,導致了空氣汙染,引發許多環保議題上的關注。因此,各國正積極研究如何有效利用這些農業廢棄物並轉換成我們可以利用的再生能源。
利用農業廢棄物來產生生質甲烷逐漸受到各國的重視,並且積極研究中,它具有許多經濟與環保上的效益,例如利用農業廢棄物為原料生產甲烷不僅成本低廉,同時也解決了廢棄物處理的問題,且可直接利用本地的農業廢棄物進行生產,不需要進口的國外的石化燃料。
然而農業廢棄物中,木質纖維素難以被微生物所降解,須要透過預處理的方式提高它的生物降解性,才能使微生物能有效的利用,將它轉換成各類型的能源。預處理的目的是破壞木質素的結構並溶解半纖維素和纖維素,之後轉化為木醣、葡萄糖等各類還原糖。目前研究已經發現利用預處理可以有效提高甲烷的產量,讓農業廢棄物能夠被更有效的利用,轉化成具有經濟效益的能源。
然而預處理的過程同時也會有許多伴隨而生的各式化學物,對於各類型的微生物造成了各種不同的影響,因此如何有效控制預處理生成的抑制物與對發酵有益的物質,是一個被廣泛討論的問題。目前研究發現利用吸附抑制物的方式,可以有效的提高甲烷的產量,是一個具有經濟效益的方式。
本研究利用各類型的酸預處理方式處理菇包木屑,在利用5%鹽酸處理60分鐘後,提升菇包木屑木質素降解與轉化成15.22 g/L的還原糖,之後比較不同預處理後的菇包木屑對甲烷的影響,當利用5%鹽酸預處理60分鐘時獲得960.83毫升的甲烷,再以預處理菇包木屑作為碳源與雞糞氮源混合,進行厭氧共發酵,並探討碳氮比以提升甲烷的產率,當利用菇包木屑與雞糞重量比例為4.56g:1g時,獲得最高每克乾重產氣107毫升,最後利用活性碳吸附預處理抑制物,討論對整體厭氧發酵產甲烷影響,發現以40g/L吸附60分鐘的狀況下,對於甲烷產氣具有明顯改善。
摘要(英) Anaerobic digestion is a widely used technology with dual benefits for treating different types of organic wastes and generating biogas. In general, we directly use sludge and agricultural waste to produce methane in anaerobic fermentation. However, methane yield and growth rate of methanogens is limited by the degradation efficiency of agricultural waste rich in lignin. So we use acid pretreatment and the co-digestion to enhance our production.
My experiment uses acid pretreatment on SMS. Different concentration & type of acid are used for experiment parameter. Using 5% of hydrochloric acid for 60 min makes the highest reduced sugar which is about 15.22 g/L. After pretreatment, SMS & chicken manure are sent to anaerobic fermentation. The non-pretreatment SMS is the control group. The 60 min 5% hydrochloric acid pretreatment get the highest daily methane concentration and the total methane production. It’s about 346% to the control group. C/N ratio is also an important parameter in the experiment. We found that the methane production per total solid is increased by 23% to 107 mL/g when the C/R ratio rise to 20 from 11. Finally, we discuss the inhibitor in the fermentation. HMF is the main inhibitor in the fermentation and it comes from the hydrolysis in acid pretreatment. Using activated carbon to absorb is the way to solve it, but it will also absorb the reducing sugar. We found that using 40 g/L of activated carbon absorb 60min makes the methane production increased by 33%. It is an effective way to increase the methane production.
關鍵字(中) ★ 共發酵
★ 預處理
★ 碳氮比
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 生質能源 4
2-2 生質甲烷 4
2-3 生質甲烷厭氧發酵 6
2-4 厭氧發酵環境因子 8
2-5菇包木屑(spent mushroom substrate,SMS) 13
2-6 菇包木屑組成與預處理方式 14
2-6.1菇包木屑組成 14
2-6.2預處理方式 18
2-7 酸水解液中副產物衍生機制與去除 24
2-7.1 5-羥甲基糠醛(HMF)的產生與對發酵的影響 24
2-7.2 有害物質去除方法 25
2-8 木質纖維素應用於甲烷生產 26
2-9雞糞 27
第三章 材料與方法 29
3-1 實驗流程設計 29
3-2 實驗材料 30
3-2.1 菇包木屑 30
3-2.2 雞糞 31
3-2.3 厭氧植種汙泥 31
3-2.4 實驗藥品 32
3-2.5 實驗儀器與設備 33
3-3 實驗方法 34
3-3.1 菇包木屑的酸預處理 34
3-3.2 甲烷厭氧發酵 35
3-3.3 不同C/N ratio下甲烷厭氧發酵 36
3-3.4 活性碳吸附預處理菇包木屑與厭氧發酵 37
3-4 分析方法 38
3-4.1 總固體量(Total Solid,TS)測定 38
3-4.2 揮發性固體量(Volatile Solids,VS)測定 38
3-4.3 每日產氣量量測 39
3-4.4 氣體層析儀---火焰離子化偵測器操作程序(GC—FID) 39
3-4.5 甲烷含量分析方法 42
3-4.6 揮發性脂肪酸分析方法 44
3-4.7 5-羥甲基糠醛分析方法 44
3-4.8 還原醣定量分析方法 46
第四章 實驗結果與討論 48
4-1 酸預處理後對菇包木屑的還原糖含量影響 48
4-1.1 鹽酸處理後還原糖含量 48
4-1.2 硫酸處理後還原糖含量 49
4-2不同預處理條件下甲烷厭氧發酵 50
4-2.1 不同預處理方式對菇包木屑甲烷百分比影響 50
4-2.2 不同預處理方式對菇包木屑沼氣日產氣影響 53
4-2.3 不同預處理方式對菇包木屑甲烷總產氣影響 55
4-2.4 不同預處理方式對菇包木屑之揮發性脂肪酸與pH影響 57
4-3不同C/N ratio下甲烷厭氧發酵 61
4-3.1 不同碳氮比對菇包木屑甲烷百分比影響 61
4-3.2 不同碳氮比對菇包木屑沼氣日產氣影響 62
4-3.4 不同碳氮比對菇包木屑之揮發性脂肪酸與pH影響 64
4-4 酸預處理的產生抑制物與活性碳吸附處理 66
4-4.1 酸預處理後5-羥甲基糠醛(HMF)含量 66
4-4.2 利用活性碳(Active carbon)吸附對抑制物與還原糖含量影響 68
4-4.3以活性碳吸附後進行厭氧發酵 70
第五章 結論與建議 74
5-1 結論 74
5-2 建議 75
第六章 參考文獻 77
參考文獻 ALVAREZ, Rene; LIDEN, Gunnar. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renewable Energy, 2008, 33.4: 726-734.

Alvira, P., Tomás-Pejó, E., Ballesteros, M. J., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource technology, 101(13), 4851-4861.

Angelidaki, I., Ahring, B. K., Deng, H., & Schmidt, J. E. (2002). Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors. Water Science and Technology, 45(10), 213-218.

Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in energy and combustion science, 34(6), 755-781.

AVGERINOS, G. C.; WANG, D_I C. Selective solvent delignification for fermentation enhancement. Biotechnology and bioengineering, 1983, 25.1: 67-83.

Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste management, 32(7), 1341-1346.

CARVALHEIRO, Florbela; DUARTE, Luís C.; GÍRIO, Francisco M. Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific & Industrial Research, 2008, 849-864.

CHANDRA, R.; TAKEUCHI, H.; HASEGAWA, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16.3: 1462-1476.
CHEN, Wei-Hsin; KUO, Po-Chih. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 2011, 36.2: 803-811.

CHEN, Ye; CHENG, Jay J.; CREAMER, Kurt S. Inhibition of anaerobic digestion process: a review. Bioresource technology, 2008, 99.10: 4044-4064.

DESWAL, Deepa; KHASA, Yogender Pal; KUHAD, Ramesh Chander. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource technology, 2011, 102.10: 6065-6072.

DEUBLEIN, Dieter; STEINHAUSER, Angelika. Biogas from waste and renewable resources: an introduction. John Wiley & Sons, 2011.

Feng, L., Li, Y., Chen, C., Liu, X., Xiao, X., Ma, X., ... & Liu, G. (2013). Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. Bioresources, 8(2), 2487-2498.

FEZZANI, Boubaker; CHEIKH, Ridha Ben. Thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid wastes in a tubular digester. Chemical Engineering Journal, 2007, 132.1-3: 195-203.

FRIGON, Jean‐Claude; GUIOT, Serge R. Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioproducts and Biorefining, 2010, 4.4: 447-458.

Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147-2160.

Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485-1496.
HENDRIKS, A. T. W. M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 2009, 100.1: 10-18.

Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100(19), 4535-4538.

KALLISTOVA, A. Yu; GOEL, G.; NOZHEVNIKOVA, A. N. Microbial diversity of methanogenic communities in the systems for anaerobic treatment of organic waste. Microbiology, 2014, 83.5: 462-483.

KAMM, B.; GRUBER, P. R.; KAMM, M. Biorefinery industrial processes and products. Status and future direction, vols. 1 and 2. 2006.

KAPARAJU, Prasad; RINTALA, Jukka. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resources, Conservation and Recycling, 2005, 43.2: 175-188..

KARUNANITHY, C.; MUTHUKUMARAPPAN, K.; JULSON, J. L. Enzymatic hydrolysis of corn stover pretreated in high shear bioreactor. In: Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting. 2008. p. 3603-3611.

KUHAR, Sarika; NAIR, Lavanya M.; KUHAD, Ramesh Chander. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Canadian journal of microbiology, 2008, 54.4: 305-313.

KUMAR, Rajeev; WYMAN, Charles E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology progress, 2009, 25.2: 302-314.

KWIETNIEWSKA, Ewa; TYS, Jerzy. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 2014, 34: 491-500.
LAY, Jiunn-Jyi; LI, Yu-You; NOIKE, Tatsuya. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research, 1997, 31.6: 1518-1524.

LEHTOMÄKI, A.; HUTTUNEN, S.; RINTALA, J. A. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resources, Conservation and Recycling, 2007, 51.3: 591-609.

MITAL, Krishna Mohan. Biogas systems: principles and applications. New Age International, 1996.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6), 673-686.

Oliva, J. M., Sáez, F., Ballesteros, I., González, A., Negro, M. J., Manzanares, P., & Ballesteros, M. (2003). Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. In Biotechnology for fuels and chemicals (pp. 141-153). Humana Press, Totowa, NJ.

PALMQVIST, Eva; HAHN-HÄGERDAL, Bärbel. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource technology, 2000, 74.1: 25-33.

PARKIN, Gene F.; OWEN, William F. Fundamentals of anaerobic digestion of wastewater sludges. Journal of Environmental Engineering, 1986, 112.5: 867-920.

RAMARAJ, Rameshprabu; DUSSADEE, Natthawud. Biological purification processes for biogas using algae cultures: A review. International Journal of Sustainable and Green Energy, 2015, 4.1-1: 20-32.

Raposo, F., Borja, R., Martín, M. A., Martín, A., De la Rubia, M. A., & Rincón, B. (2009). Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chemical Engineering Journal, 149(1-3), 70-77.

RASI, S.; VEIJANEN, A.; RINTALA, J. Trace compounds of biogas from different biogas production plants. Energy, 2007, 32.8: 1375-1380.

REN, N. Q.; WANG, A. J.; MA, F. Acid-producing fermentative microbe physiological ecology. 2005.

Ren, N., Liu, M., Wang, A., Ding, J., & Li, H. (2003). Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process. Huan jing ke xue= Huanjing kexue, 24(4), 89-93.

RUBIN, Edward M. Genomics of cellulosic biofuels. Nature, 2008, 454.7206: 841.

SÁNCHEZ, Carmen. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances, 2009, 27.2: 185-194.

SCHNURER, Anna; JARVIS, Asa. Microbiological handbook for biogas plants. Swedish Waste Management U, 2010, 2009: 1-74.

Shi, X. S., Yuan, X. Z., Wang, Y. P., Zeng, S. J., Qiu, Y. L., Guo, R. B., & Wang, L. S. (2014). Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate. Chemical Engineering Journal, 244, 258-263.

Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T., & Akaracharanya, A. (2008). Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae. Annals of microbiology, 58(2), 219-225.

Sun, C., Cao, W., Banks, C. J., Heaven, S., & Liu, R. (2016). Biogas production from undiluted chicken manure and maize silage: a study of ammonia inhibition in high solids anaerobic digestion. Bioresource technology, 218, 1215-1223.
Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (2000). Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Applied microbiology and biotechnology, 53(6), 701-708.

TAHERZADEH, Mohammad J.; KARIMI, Keikhosro. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 2008, 9.9: 1621-1651.

Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and bioenergy, 33(5), 848-853.

Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology, 99(17), 7928-7940.

Weil, J., Westgate, P., Kohlmann, K., & Ladisch, M. R. (1994). Cellulose pretreaments of lignocellulosic substrates. Enzyme and microbial technology, 16(11), 1002-1004.

Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25-31.

ZEIKUS, J. G. The biology of methanogenic bacteria. Bacteriological reviews, 1977, 41.2: 514.

Zhao, R., Zhang, Z., Zhang, R., Li, M., Lei, Z., Utsumi, M., & Sugiura, N. (2010). Methane production from rice straw pretreated by a mixture of acetic–propionic acid. Bioresource Technology, 101(3), 990-994.

台灣養雞協會. 台灣地區各類雞隻數量. 2014.

卓威廷。稻草及有機廢棄物高溫厭氧共消化之研究。國立屏東科技大學環境工程與科學系碩士論文。2009。
林俊成, et al. 菇類栽培之木屑使用量及來源推估. 林業研究專訊, 2015, 22.2: 56-60.

施智雄 利用鹼和 Aspergillus niger 處理稻稈以提升甲烷生產於厭氧共發酵系統,2013年

陳宗明. 台灣菇類產業生產現況. 菇類生技產業研討會專刊:, 2016, 13-27.

楊紹榮 農業廢棄物處理與再利用,1998年

經濟部能源局,2012能源產業技術白皮書,第2章,21頁,2012年。

蔣本基, 張慶源, 林秋裕,推廣農林及都市與事業廢棄物之生質能源應用策略規劃,行政院環境保護署,2011年。
指導教授 徐敬衡 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明