參考文獻 |
Chapter 1
(1) Halasz, A. S. Solubility as a Challenge in Drug Research and Development. In Solubility, Delivery and ADME Problems of Drugs and Drug-Candidates; Tihanyi, K.; Vastag, M.; Bentham Books: Hungary, 2011; pp 52-67.
(2) Waiver of in Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System: Guidance for Industry. https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/ucm128219.htm (accessed April 30, 2018).
(3) Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Prospects. Acta Pharm. Sin. B 2015, 5 (5), 442-453.
(4) Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1-10.
(5) Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9 (6), 304-316.
(6) Patel, R. Parenteral Suspension: An Overview. Int J Curr Pharm Res 2010, 2 (3), 4-13.
(7) Patel, B. B.; Patel, J. K.; Chakraborty, S.; Shukla, D. Revealing Facts Behind Spray Dried Solid Dispersion Technology Used for Solubility Enhancement. Saudi Pharm. J. 2015, 23 (4), 352-365.
(8) Agrawal, Y.; Patel, V. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 81-88.
(9) A Solution for Poor Water Solubility. http://www.worldpharmaceuticals.net/features/featurea-solution-for-poor-water-solubility-4214373/ (accessed June 6, 2018).
(10) Gupta, S.; Kesarla, R.; Omri, A. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems. ISRN Pharm. 2013, 1-16.
(11) Kakran, M.; Li, L.; Muller, R. H. Overcoming the Challenge of Poor Drug Solubility. Pharm. Eng. 2012, 32 (4), 1-7.
(12) Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. H. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 2013, 65 (1), 315-499.
(13) Lee, T.; Wang, Y. W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35 (5), 555-567.
(14) Derdour, L.; Reckamp, J. M.; Pink, C. Development of a Reactive Slurry Salt Crystallization to Improve Solid Properties and Process Performance and Scalability. Chem. Eng. Res. Des. 2017, 121, 207-218.
(15) Trask, A. V.; Haynes, D. A.; Motherwell, W. D. S.; Jones, W. Screening for Crystalline Salts via Mechanochemistry. Chem. Commun. 2005, 2006 (1), 51-53.
(16) Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug Salt Formation via Mechanochemistry: The Case Study of Vincamine. Mol. Pharm. 2013, 10 (1), 211-224.
(17) Lee, H. L.; Vasoya, J. M.; De Lima Cirqueira, M.; Yeh, K. L.; Lee, T.; Serajuddin, A. T. M. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder. Mol. Pharm. 2017, 14 (4), 1278-1291.
(18) Clarke, B. J.; Hildebrand, R. P.; White, A. W. The Application of Salt Formation in the Chemistry and Technology of Hop Resins. J. Inst. Brew. 1976, 82, 212-217.
(19) Salt Selection in Drug Development. http://www.pharmtech.com/salt-selection-drug-development (accessed May 31, 2018).
(20) Wiedmann, T. S.; Naqwi, A. Pharmaceutical Salts: Theory, Use in Solid Dosage Forms and in Situ Preparation in an Aerosol. Asian J. Pharm. Sci. 2016, 11 (6), 722–734.
(21) Byrn, S. R.; Zografi, G.; Chen, X. Solid-State Properties of Pharmaceutical Materials; Wiley: U.S.A., 2017; pp 48-59.
(22) Makary, P. Principles of Salt Formation. UK J. Pharm. Biosci. 2014, 2 (4), 1-4.
(23) Guidance for Industry: New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed June 25, 2018).
(24) Serajuddin, A. T. M. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59 (7), 603-616.
(25) Monkhouse, D. C. Pharmaceutical Salts. J. Pharm. Sci. 1977, 66 (1), 1-19.
(26) Gao, Z.; Rohani, S.; Gong, J.; Wang, J. Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry. Engineering 2017, 3 (3), 343-353.
(27) He, Y.; Orton, E.; Yang, D. The Selection of a Pharmaceutical Salt-The Effect of the Acidity of the Counterion on Its Solubility and Potential Biopharmaceutical Performance. J. Pharm. Sci. 2018, 107 (1), 419-425.
(28) Paulekuhn, G. S.; Dressman, J. B.; Saal, C. Trends in Active Pharmaceutical Ingredient Salt Selection Based on Analysis of the Orange Book Database. J. Med. Chem. 2007, 50 (26), 6665-6672.
(29) Pudipeddi, M.; Serajuddin, A. T. M.; Grant, D. J. W.; Stahl, P. H. Solubility and Dissolution of Weak Acids, Bases, and Salts. In Handbook of Pharmaceutical Salts: Properties, Selection, and Use; Stahl, P. H.; Wermuth, C. G.; Freiburg: Germany, 2002; pp 19-40.
(30) Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical Cocrystals, Salts and Polymorphs: Advanced Characterization Techniques. Adv. Drug Deliv. Rev. 2017, 117, 111-146.
(31) Nechipadappu, S. K.; Ramachandran, J.; Shivalingegowda, N.; Lokanath, N. K.; Trivedi, D. R. Synthesis of Co-crystal/Salts of Flucytosine: Structural and Stability. New J. Chem. 2018, 42 (7), 5433-5446.
(32) Bastin, R. J.; Bowker, M. J.; Slater, B. J. Salt Selection and Optimisation Procedures for Pharmaceutical New Chemical Entities. Org. Process Res. Dev. 2000, 4 (5), 427-435.
(33) He, Y.; Ho, C.; Yang, D.; Chen, J.; Orton, E. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts. J. Pharm. Sci. 2017, 106 (5), 1190-1196.
(34) Wu, H.; West, A. R.; Vickers, M.; Apperley, D. C.; Jones, A. G. Synthesis, Crystallization and Characterization of Diastereomeric Salts Formed by Ephedrine and Malic Acid in Water. Chem. Eng. Sci. 2012, 77, 47-56.
(35) Tan, D.; Loots, L.; Fri??i?, T. Towards Medicinal Mechanochemistry: Evolution of Milling from Pharmaceutical Solid Form Screening to the Synthesis of Active Pharmaceutical Ingredients (APIs). Chem. Commun. 2016, 52 (50), 7760-7781.
(36) Wu, W.; Lobmann, K.; Rades, T.; Grohganz, H. On the Role of Salt Formation and Structural Similarity of Co-Formers in Co-Amorphous Drug Delivery Systems. Int. J. Pharm. 2018, 535 (1–2), 86-94.
(37) Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug Salt Formation via Mechanochemistry: The Case Study of Vincamine. Mol. Pharm. 2013, 10 (1), 211-224.
(38) Talapatra, S. K.; Talapatra, B. Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine; Springer: India, 2013: pp 802-809.
(39) Papaverine. www.drugfuture.com/chemdata/papaverine.html (accessed April 2, 2018).
(40) Aboutabl, E. A.; El-Azzouny, A. A.; Afifi, M. S. 1H-NMR Assay of Papaverine Hydrochloride and Formulations. Phytochem. Anal. 2002, 13 (6), 301-304.
(41) Bauer, V.; ?apek, R. Studies on the Neuropharmacology of Papaverine-I. The Curare-like Action Isolated Nerve-Muscle Preparation. Neuropharmacology 1971, 10 (4), 499-506.
(42) Al-Masri, I. M. Pancreatic Lipase Inhibition by Papaverine?: Investigation by Simulated Molecular Docking and Subsequent In Vitro Evaluation. Jordan J. Pharm. Sci. 2013, 6 (3), 271-279.
(43) Ithakissions, S. D.; Tsatsas, G.; Nikokavouras, J.; Tsolis, A. Synthesis of Papaverine and Quinopavine Specifically Labelled with 14C. J. Labelled Compd. 1974, 10 (3), 369-379.
(44) Guthrie, D. A.; Frank, A. W.; Purves, C. B. Studies in the Polyoxyphenol Series: The Synthesis of Papaverine and Papaveraldine by the Pomeranz-Fritsch Method. Can. J. Chem. 1955, 33 (5), 729-742.
(45) Allen, I.; Buck, J. S. Papaverine: An Attempted Rugheimer Synthesis. J. Am. Chem. Soc. 1930, 52 (1), 310-314.
(46) Galat, A. Synthesis of Papaverine and Some Related Compounds. J. Am. Chem. Soc. 1951, 73 (8), 3654-3656.
(47) Han, X.; Lamshoft, M.; Grobe, N.; Ren, X.; Fist, A. J.; Kutchan, T. M.; Spiteller, M.; Zenk, M. H. The Biosynthesis of Papaverine Proceeds via (S)-Reticuline*. Phytochemistry 2010, 71 (11), 1305-1312.
(48) Patel, T. R.; Schoenwald, R. D.; Lach, J. L. Comparative Bioavailability of Papaverine Hydrochloride, Papaverine Hexametaphosphate and Papaverine Polymetaphosphate. Drug Dev. Ind. Pharm. 1981, 7 (3), 329–345.
(49) Littauer, M. D. D.; Wright, I. S. M. D. Papaverine Hydrochloride: Its Questionable Value as a Vasodilating Agent for Use in the Treatment of Peripheral Vascular Diseases. Am. Heart J. 1939, 17 (3), 325-333.
(50) Marciniec, B.; Kozak, M.; Naskrent, M.; Hofman, M.; Dettlaff, K.; Stawny, M. DSC and EPR Analysis of Some Radiation Sterilized Alkaloids. J. Therm. Anal. Calorim. 2010, 102 (1), 261-267.
(51) Roques, R.; Piquion, J.; Fourme, R.; Antre, D. Crystal and Molecular Structure of the Alkaloid Papaverine Hydrochloride. J. Cryst. Mol. Struct. 1973, 4 (4), 213-225.
(52) Datta, A. S.; Bagchi, S.; Chakrabortty, A.; Lahiri, S. C. Studies on the Weak Interactions and CT Complex Formations between Chloranilic Acid, 2,3-Dichloro-5,6-Dicyano-P-Benzoquinone, Tetracyanoethylene and Papaverine in Acetonitrile and Their Thermodynamic Properties, Theoretically, Spectrophotometrically Aided. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2015, 146, 119-128.
Chapter 2
(1) Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62–72.
(2) Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72–92.
(3) Lee, T.; Wang, Y. W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35 (5), 555–567.
(4) Derdour, L.; Reckamp, J. M.; Pink, C. Development of a Reactive Slurry Salt Crystallization to Improve Solid Properties and Process Performance and Scalability. Chem. Eng. Res. Des. 2017, 121, 207–218.
(5) Trask, A. V.; Haynes, D. A.; Motherwell, W. D. S.; Jones, W. Screening for Crystalline Salts via Mechanochemistry. Chem. Commun. 2006, (1), 51–53.
(6) Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug Salt Formation via Mechanochemistry: The Case Study of Vincamine. Mol. Pharm. 2013, 10 (1), 211–224.
(7) Wu, Z.; Yang, S.; Wu, W. Application of Temperature Cycling for Crystal Quality Control during Crystallization. CrystEngComm 2016, 18 (13), 2222–2238.
Chapter 3
(1) Grodowska, K.; Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Pol. Pharm. Res. 2010, 67 (1), 3–12.
(2) U.S. Food and Drug Administration. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed May 29, 2018).
(3) Chemical Economic Handbook: Isopropyl Alcohol. https://ihsmarkit.com/products/isopropyl-alcohol-ipa-chemical-economics-handbook.html (accessed May 3, 2018).
(4) Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62–72.
(5) Reus, M. A.; Deng, W. W. L. P.; Guguta, C.; Kramer, H. J. M.; Horst, J. H. Solubility: Importance , Measurements and Applications. White Paper: Technobis Crystallization System. 2016, p. 1–8.
(6) Marciniec, B.; Kozak, M.; Naskrent, M.; Hofman, M.; Dettlaff, K.; Stawny, M. DSC and EPR Analysis of Some Radiation Sterilized Alkaloids. J. Therm. Anal. Calorim. 2010, 102 (1), 261–267.
(7) Richardson, J.F.; Harker, J.H.; Backhurst, J.R. Chemical Engineering: Particle Technology and Separation Processes, 5th ed.; Butterworth Heinemann: New York, 1955.
(8) Galat, A. Synthesis of Papaverine and Some Related Compounds. J. Am. Chem. Soc. 1951, 73 (8), 3654–3656.
(9) Baizer, M. M.; Flushing, N. Y. Method for Producing Pure Papaverine Hydrochloride. US 2507135, May 9, 1950.
(10) Cozar, O.; Kiefer, W.; Lendl, B. Raman , IR , and Surface-Enhanced Raman Spectroscopy of Papaverine An Automated Setup for In Situ Synthesis of the Silver Substrate and Recording of the SER Spectra. 2004, 36, 47–55.
(11) Datta, A. S.; Chattaraj, S. B.; Chakrabortty, A.; Lahiri, S. C. Studies on the Weak Interactions and CT Complex Formations between Chloranilic Acid, 2,3-dicyano-p-benzoquinone, Tetracyanoethylene and Papaverine in Acetonitrile and Their Thermodynamic Properties, Theoretically, Spectrophotometrically Aided by FTIR. Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 2015, 146, 119–128.
(12) Macht, D. I.; Baltimore, M. D. A Pharmacologic and Clinical Study of Papaverin*. Arch Intern Med 1916, 19 (6), 786–805.
(13) Burger, A. The Benzylisoquinoline Alkaloids. In The Alkaloids: Chemistry and Physiology; Manske, R. H. F.; Holmes, H.L.; New York, 1954; Vol. 4; p. 29-45.
(14) Hifnawy, M. S.; Muhtadi, F.J. analytical Profile of Papaverine Hydrochloride. In Analytical Profiles of Drug Substances; Florey, K.; San Diego: California , 1994; Vol. 17; p. 367-448.
(15) Michalchuk, A. A. L.; Tumanov, I. A.; Konar, S.; Kimber, S. A. J.; Pulham, C. R.; Boldyreva, E. V. Challenges of Mechanochemistry: Is In Situ Real-Time Quantitative Phase Analysis Always Reliable? A Case Study of Organic Salt Formation. Adv. Sci. 2017, 4 (9), 1-7.
(16) Bag, P. P.; Ghosh, S.; Khan, H.; Devarapalli, R.; Malla Reddy, C. Drug–Drug Salt Forms of Ciprofloxacin with Diflunisal and Indoprofen. CrystEngComm 2014, 16 (32), 7393–7396.
(17) Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug Salt Formation via Mechanochemistry: The Case Study of Vincamine. Mol. Pharm. 2013, 10 (1), 211–224.
(18) Lee, H. L.; Vasoya, J. M.; De Lima Cirqueira, M.; Yeh, K. L.; Lee, T.; Serajuddin, A. T. M. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder. Mol. Pharm. 2017, 14 (4), 1278–1291.
(19) Haser, A.; Cao, T.; Lubach, J. W.; Zhang, F. In Situ Salt Formation during Melt Extrusion for Improved Chemical Stability and Dissolution Performance of a Meloxicam-Copovidone Amorphous Solid Dispersion. Mol. Pharm. 2018, 15 (3), 1226–1237.
(20) Derdour, L.; Reckamp, J. M.; Pink, C. Development of a Reactive Slurry Salt Crystallization to Improve Solid Properties and Process Performance and Scalability. Chem. Eng. Res. Des. 2017, 121, 207–218.
(21) Pantelic, I.; Lukic, M.; Markovic, B.; Lusiana; Hoffmann, C.; Muller-Goymann, C.; Milic, J.; Daniels, R.; Savic, S. Development of a Prospective Isopropyl Alcohol-Loaded Pharmaceutical Base Using Simultaneous in Vitro/in Vivo Characterization Methods of Skin Performance. Drug Dev. Ind. Pharm. 2014, 40 (7), 960–971.
(22) Burlage, H. M.; Hawkins, D. B. Pharmaceutical Applications of Isopropyl Alcohol. I. As a Solvent in Pharmaceutical Manufacturing. J. Am. Pharm. Assoc. 1946, 35 (12), 379–384.
(23) Li, C. J. Reflection and Perspective on Green Chemistry Development for Chemical Synthesis-Daoist Insights. Green Chem. 2016, 18 (7), 1836–1838.
(24) Parente, E. Description and Identification. In Specification of Drug Substances and Products: Developmentand validation of Analytical Methods; Riley, C. M.; Rosanske, T. W.; Riley, S. R. R.; Waltham: USA, 2014; p. 91-106.
(25) Papaverine. www.drugfuture.com/chemdata/papaverine.html (accessed April 2, 2018).
(26) Wu, Z.; Yang, S.; Wu, W. Application of Temperature Cycling for Crystal Quality Control during Crystallization. CrystEngComm 2016, 18 (13), 2222–2238.
(27) Simone, E.; Klapwijk, A. R.; Wilson, C. C.; Nagy, Z. K. Investigation of the Evolution of Crystal Size and Shape during Temperature Cycling and in the Presence of a Polymeric Additive Using Combined Process Analytical Technologies. Cryst. Growth Des. 2017, 17 (4), 1695–1706.
Chapter 4
(1) Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of Solvents, pH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem. 2015, 1–21.
(2) Kitamura, M.; Konno, H.; Yasui, A.; Masuoka, H. Controlling Factors and Mechanism of Reactive Crystallization of Calcium Carbonate Polymorphs from Calcium Hydroxide Suspensions. J. Cryst. Growth 2002, 236 (1), 323–332.
(3) Sawada, K. The Mechanisms of Crystallization and Transformation of Calcium Carbonates. Pure Appl. Chem. 1997, 69 (5), 921–928.
(4) Hixson, A. W.; Knox, K. L. Effect of Agitation on Rate of Growth of Single Crystals. Eng. Process Dev. 1951, 43 (9), 2144–2151.
(5) Harada, Y.; Kusada, K.; Sukenaga, S.; Yamamura, H.; Ueshima, Y.; Mizoguchi, T.; Saito, N.; Nakashima, K. Effects of Agitation and Morphology of Primary Crystalline Phase on Crystallization Behavior of CaO–SiO2–CaF2 Supercooled Melts. ISIJ Int. 2014, 54 (9), 2071–2076. |