博碩士論文 105223007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.149.255.196
姓名 王騰輝(Teng-Hui Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場排列電極材料於高能鋰離子電池之研究
(Using electric field arrange electrode materials for lithium ion batteries)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著3C產品的使用以及電動車的發展,下一代鋰離子電池需要高的能量密度以及高的功率密度,新的正極材料開發以及負極材料的包覆是近幾年來可以增加能量密度的方式。製造低曲折率(Tortuosity)、高孔洞性(Pores)、高電解液滲透率(Permeability)、低阻抗值(Impedance)的極片將是下一代鋰離子電池開發高能量密度以及高功率密度的新方向。
在此篇研究中,使用電場施加極片的方式來製造出低曲折率的極片。當鋰離子在極片中移動的路徑減小,則鋰離子移動的速度增加,電阻抗就會降低,這是一種可以提升功率密度又不會降低能量密度的做法。本研究使用穩定的尖晶石(Spinel)結構鋰鈦氧(Li4Ti5O12 [LTO])來做活性材料,並使用外加電場可以排列無機物的概念誘導陰極漿料(LTO、導電碳黑[Super-P]、黏著劑[PVdF])排列。由表面AFM、表面SEM、還有斷面SEM結果可以表明電極材料形成孔隙結構、低的曲折率、以及高的孔洞半徑。由離子導電度測試可以發現導電度有增加(由1.32×10-3 S cm-1 提升到4.45×10-3 S cm-1 ),交流阻抗測試可以發現電荷轉移阻抗(Charge transfer Resistant [Rct])有降低的情形(由 164.0Ω 降低到 80.1Ω ),這些數據可以表明使用電場施加的極片是可以提升電解液的穿透率以及降低極片的阻抗值。
最後,以不同電壓範圍以及不同速率充放電測試並且使用拉格圖(Ragone Plot)來找能量密度以及功率密度的關係圖譜。發現到經過電場施加的極片可以有效提升能量密度以及功率密度。功率密度從545.3增加至660.4 W kg-1,而能量密度從57.1增加至105.3 Wh kg-1。而高的孔隙結構也可以增加極片的比電容數值(specific capacity)而展現擬電容器(Pseudocapacitance)的現象。
摘要(英) New materials are being developed for next generation of lithium battery with higher energy and power density. Making low tortuosity and more porosity electrode has the potential to deliver high permeability of electrolytes and lower ion transport resistance. These features are essential to raise the power and energy density for next generation lithium ion batteries.
In present work, we report a novel approach by architecting lower tortuosity electrode structure with the use of electric field poling technique. The straightforward ion transfer path established fluent electrolyte permeation and faster ion transport with the voids in electrode, and maintains high power density without sacrificing energy density. This approach is demonstrated with the stable spinel structure Li4Ti5O12 (LTO) as an active material. The external electric force induced instantaneous dipole interaction which served to arrange the anode components (carbon black, binder) containing LTO with preferentially ordered alignment. Surface AFM, surface SEM and cross-section SEM results shows the electrode developed a pore structure with lower degree of tortuosity, and larger pore size. Ion conductivity is found to be increased (from 1.32×10-3 to 4.45×10-3 S/cm) and AC-impedance analysis shows the Rct, is reduced (from 164.0 to 80.1Ω). This confirms that E-F poling has developed benign electrode pore structure for better electrolyte permeation which shows lower ion transport resistance.
Finally, different voltage range and variable charge-discharge rate test revealed the relationship of power and energy density with Ragone Plot which suggested that the electric field-induced inorganic alignment is able to elevated both power and energy densities. On average, power density is increased from 545.3 to 660.4 W/kg, and energy density from 57.1 to 105.3 Wh/kg. The larger pore structure also allows for more complete access to active electrode materials, thus improves the specific capacitance, as well.
關鍵字(中) ★ 尖晶石
★ LTO
★ Li4Ti5O12
★ 電場誘導
關鍵字(英) ★ Spinel
★ LTO
★ Li4Ti5O12
★ Electric field induction
論文目次 摘要 i
Abstract ii
致謝辭 iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 介紹 1
1-1 前言 1
1-2 電池儲能裝置 3
1-3 鋰離子電池與其工作原理 5
第二章 文獻回顧 7
2-1 電解液進入極片的因素 7
2-1-1 曲折率 7
2-1-2 有效的擴散係數 8
2-1-3 探討正極材料的厚度以及電解液之間的關係 9
2-2 如何增加鋰離子電池的效能(能量密度以及功率密度) 11
2-2-1 摻入碳材 12
2-2-2 改變活性材料—晶格組成改變 15
2-2-3 增加或製造表面積 18
2-2-4 使用犧牲劑來做孔洞結構 28
2-3 鋰鈦氧(LTO)負極材料 30
2-4 超級電容(電雙層電容器) 30
2-5 使用電流密度法測量電池與電容器的效能 33
2-5-1 循環壽命測試 34
2-5-2 變速率充放電測試 36
第三章 藥品儀器以及實驗介紹 38
3-1 實驗藥品與器材以及實驗設備儀器 38
3-1-1 實驗藥品 38
3-1-2 實驗器材 40
3-1-3 實驗設備儀器 40
3-2 實驗方法與步驟 43
3-2-1 正常極片的製作方法(沒有通入電場的極片) 44
3-2-2 電場的施加方法(通入電場的極片) 44
3-2-3 半電池的製作方法 45
3-3 氮氣吸脫附儀(N2 Adsorption Desorption Isotherm) 47
3-4 交流阻抗儀 48
第四章 結果與討論 49
4-1 極片的形貌 49
4-1-1 AFM表面鑑定 50
4-1-2 SEM表面鑑定 51
4-1-3 SEM斷面鑑定 52
4-1-4 BET孔徑度測試 53
4-1-5 電解液的擴散時間 55
4-2 使用交流阻抗測量極片的電阻以及半電池的阻抗 56
4-2-1 極片導電度測試 56
4-2-2 半電池交流阻抗測試 58
4-3 電化學性能測試 60
4-3-1 電池性能測試 (Capacity) [正常電壓充放電測試 (1.0~2.5V)] 61
4-3-2 電池性能測試 (Capacity) [過充電壓充放電測試 (0.1~2.5V)] 68
4-3-3 電容性能測試 (Faraday) 78
4-4 化成三圈後的EDX元素鑑定 86
4-5 電場對無機物的影響 88
第五章 結論與未來展望 93
參考文獻 97
參考文獻 1. Cole, S., et al. SWOT analysis of utility side energy storage technologies. in Proceedings of the 5th WSEAS/IASME International Conference on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain. 2005.
2. 鄧名傑 and 陳錦明, 超級電池超級能耐. 專題報導 科學發展 2015年10月 514期, 2015.
3. renyu888666, Research progress of electric vehicle power battery technology. https://steemit.com/thanks/@renyu888666/research-progress-of-electric-vehicle-power-battery-technology, 2018.
4. Dinger, A., et al., Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. The Boston Consulting Group, 2010. 7: p. 2017.
5. 電動產業的世界-電動車電池管理系統及測試 (轉載). http://blog.xuite.net/joh3622/johnason/112606366-%E9%9B%BB%E5%8B%95%E8%BB%8A%E9%9B%BB%E6%B1%A0%E7%AE%A1%E7%90%86%E7%B3%BB%E7%B5%B1%E5%8F%8A%E6%B8%AC%E8%A9%A6+%28%E8%BD%89%E8%BC%89%29, 2011.
6. Harris, S.J. Lithium Battery Research-Li Ion Battery Aging, Degradation, and Failure-Tortuosity in Li-ion battery porous electrodes. http://lithiumbatteryresearch.com/Tortuosity.php 2017.
7. Wei, L., et al., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Scientific Reports, 2016. 6: p. 19583.
8. Lee, M.-J., et al., Low-Temperature Carbon Coating of Nanosized Li1. 015Al0. 06Mn1. 925O4 and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017. 17(6): p. 3744-3751.
9. Tian, Y., et al., Hetero-assembly of a Li4Ti5O12 nanosheet and multi-walled carbon nanotube nanocomposite for high-performance lithium and sodium ion batteries. RSC Advances, 2017. 7(6): p. 3293-3301.
10. Su, X., et al., High power lithium-ion battery based on a LiMn 2 O 4 nanorod cathode and a carbon-coated Li 4 Ti 5 O 12 nanowire anode. RSC Advances, 2016. 6(109): p. 107355-107363.
11. 史楠楠, et al., N摻雜C包覆Li4Ti5O12鋰離子電池負極材料的製備與性能. 高等學校化學學報, 2015(2015年 05): p. 981-988.
12. Hulsure, N., High energy and capacity cathode material for li ion battries. https://www.slideshare.net/biradarnatraj/high-energy-and-capacity-cathode-material-for-li-ion-battries, 2014.
13. Luu, K., Understanding of thermal stability of lithium ion batteries. https://www.slideshare.net/khuelv/understanding-of-thermal-stability-of-lithium-ion-batteries, 2015.
14. Guohua, L., et al., The Spinel Phases LiM y Mn2− y O 4 (M= Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1996. 143(1): p. 178-182.
15. Kang, B. and G. Ceder, Battery materials for ultrafast charging and discharging. Nature, 2009. 458(7235): p. 190.
16. Wolfenstine, J. and J. Allen, Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. Journal of Power Sources, 2008. 180(1): p. 582-585.
17. Yi, T.-F., et al., Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method. Journal of The Electrochemical Society, 2011. 158(3): p. A266-A274.
18. Li, F., et al., Sb doped Li4Ti5O12 hollow spheres with enhanced lithium storage capability. RSC Advances, 2016. 6(32): p. 26902-26907.
19. Sun, Y.K., et al., Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials. Journal of Power Sources, 2004. 125(2): p. 242-245.
20. Kajiyama, A., et al., 高出力Li4Ti5O12の粉末および電池特性—Relationship between Battery and Powder properties for Li4Ti5O12 fin particle. THE 52ND BATTERY SYMPOSIUM IN JAPAN, 2011. 2C05: p. 200.
21. Lee, H.-W., et al., Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Letters, 2010. 10(10): p. 3852-3856.
22. Hosono, E., et al., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano letters, 2009. 9(3): p. 1045-1051.
23. Liu, J., et al., Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Letters, 2014. 14(5): p. 2597-2603.
24. Jiang, Y.-M., et al., Li4Ti5O12/TiO2 Hollow Spheres Composed Nanoflakes with Preferentially Exposed Li4Ti5O12 (011) Facets for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(22): p. 19791-19796.
25. Liu, Y. and Y. Yang, Recent progress of TiO 2-based anodes for Li ion batteries. Journal of Nanomaterials, 2016. 2016: p. 2.
26. Kim, J.H., et al., A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. International Journal of Hydrogen Energy, 2016. 41(31): p. 13549-13556.
27. Sander, J., et al., High-performance battery electrodes via magnetic templating. Nature Energy, 2016. 1(8): p. 16099.
28. Ferg, E., et al., Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society, 1994. 141(11): p. L147-L150.
29. Yi, T.-F., S.-Y. Yang, and Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(11): p. 5750-5777.
30. Murphy, D., et al., Ternary LixTiO2 phases from insertion reactions. Solid State Ionics, 1983. 9: p. 413-417.
31. Plitz, I., et al., The design of alternative nonaqueous high power chemistries. Applied Physics A, 2005. 82(4): p. 615-626.
32. Khairy, M., K. Faisal, and M.A. Mousa, High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. Journal of Solid State Electrochemistry, 2016. 21(3): p. 873-882.
33. Fan, Q., et al., Activated-Nitrogen-Doped Graphene-Based Aerogel Composites as Cathode Materials for High Energy Density Lithium-Ion Supercapacitor. Journal of The Electrochemical Society, 2016. 163(8): p. A1736-A1742.
34. Sun, Y.-K., et al., Synthesis and electrochemical characterization of spinel Li [Li (1− x)/3CrxTi (5− 2x)/3] O4 anode materials. Journal of power sources, 2004. 125(2): p. 242-245.
35. Wang, L., et al., Understanding the Effect of Preparative Approaches in the Formation of “Flower-like” Li4Ti5O12—Multiwalled Carbon Nanotube Composite Motifs with Performance as High-Rate Anode Materials for Li-Ion Battery Applications. Journal of The Electrochemical Society, 2017. 164(2): p. A524-A534.
36. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8.
37. Chen, C., et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy & Environmental Science, 2017. 10(2): p. 538-545.
38. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011. 196(1): p. 1-12.
39. Rozynek, Z., et al., Dipolar ordering of clay particles in various carrier fluids. 2012.
40. Andy, H., Technology Articles-BET surface area, BJH pore size distribution, Gas Pycnometer true density_Adsorption Isotherm. http://particlescies.blogspot.com/2013/07/adsorption-isotherm.html, 2013.
41. Ebner, M., et al. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes Studied by Synchrotron X-ray Tomography. in Meeting Abstracts. 2013. The Electrochemical Society.
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2018-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明