博碩士論文 102324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.119.119.119
姓名 廖清翰(Ching-Han Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 有機/氮化鎵混合發光二極體的發光機制與效率
(Emission Mechanism and Efficiency of F8T2/GaN LED)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此研究將有機F8T2塗佈於無機氮化鎵發光二極體製作出白光F8T2/氮化鎵發光二極體,其中,白光是由氮化鎵發光二極體發出的藍光與F8T2層發出的黃光所組成。有別於一般有機/無機發光二極體的發光機制, F8T2層所發出的黃光是由光致發光與電致發光所組成,其中,電致發光所產生的黃光佔總體黃光的83%以上。由於此結構包含兩個發光區MQWs與F8T2層,也包含兩個能障:於p-GaN與MQWs之間的電子阻擋層、於F8T2層與p-GaN之間的界面層障,分別阻止電子進入F8T2層發光區與阻止電洞進入MQWs發光區,隨著電流的上升,有較高比例的載子可以克服能障進入發光區,黃光與藍光的外部效率皆隨著電流上升而上升,所以F8T2/GaN LED的外部效率會隨著電流上升而上升。F8T2層的加入不但可做為發光元件的發光層,F8T2層與p-GaN的界面層障可以控制載子的傳輸,以穩定元件於不同操作電流下不同波段的發光比例,使F8T2/GaN LED發光元件不會有明顯的色偏差。
摘要(英) The white light F8T2/GaN LED is produced by the hybridization of the blue light of GaN LED and the yellow/green light of the F8T2 layer. The emission mechanism of the F8T2 layer of F8T2/GaN LED is different from the emission mechanism of the organic layer of general organic/inorganic LED. The most part of luminescence of the F8T2 layer is electroluminescence which is up to 83% of whole luminescence. Since F8T2/GaN LED has an EBL between p-GaN and MQWs and a potential barrier at the interface of p-GaN and F8T2 layer, the electrons and holes would be obstructed at MQWs and F8T2 layer, respectively. The large part of charge carriers can overcome the potential barrier with the input current. Therefore, the higher percentage of electrons would overcome the EBL to the F8T2 layer with the input current and the higher percentage of holes overcome the potential barrier at the interface between F8T2 and p-GaN and transport to MQWs with the input current. The concentration difference of electron and hole in both active region (F8T2 layer and MQWs) would decrease, so, there are higher blue light and yellow light are produced in MQWs and the F8T2 layer with the input current, respectively. Therefore, the external efficiency of the blue light and the yellow light in the F8T2/GaN LED increases with the input current. F8T2 layer act as the emission layer and the potential barrier at the interface between F8T2 and p-GaN can control the charge carrier injection. Therefore, the radiant flux ratio of different wavelength would not obviously change with the input current. So, the F8T2/GaN LED do not have obviously color deviation with the input current.
關鍵字(中) ★ 氮化鎵
★ 有機/無機發光二極體
★ 發光機制
★ 效率
關鍵字(英) ★ F8T2
★ GaN
★ organic/inorganic LED
★ emission mechanism
★ efficiency
論文目次 摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
1.1 Gallium Nitride Light Emitting Diode 1
1.2 Organic Light Emitting Diode 5
1.3 F8T2 Characters 8
1.4 General Type of Hybrid Light Emitting Diode 9
Chapter 2 Motivation 12
Chapter 3 Experimental procedures 13
3.1 Gallium Nitride Light Emitting Diode Grown by Metal-organic Chemical Vapor Deposition 13
3.2 Preparation of F8T2 Organic Solution and Fabrication of F8T2/GaN LED 15
3.3 Instrumental analysis 16
Chapter 4 Characteristics of F8T2/GaN LED 18
4.1 Photoluminescence (PL) Properties of F8T2/GaN LED 18
4.2 Electroluminescence (EL) Properties of F8T2/GaN LED 20
4.3 Emission Characteristic of the F8T2 Layer 22
Chapter 5 Emission Mechanism of F8T2 in F8T2/GaN LED 31
5.1 Excess Carrier Phenomenon in F8T2/GaN LED 31
5.2 The charge carrier-recycling for electroluminescence 38
5.3 Efficiency of F8T2/GaN LED 41
Chapter 6 Summary 47
Reference 49
參考文獻 1. Davydov, V.Y., et al., Band Gap Of Hexagonal InN And InGaN Alloys. Physica Status Solidi (B), 2002. 234(3): p. 787-795.
2. Yim, W., et al., Epitaxially Grown AlN And Its Optical Band Gap. Journal of Applied Physics, 1973. 44(1): p. 292-296.
3. Monemar, B., Fundamental Energy Gap Of GaN From Photoluminescence Excitation Spectra. Physical Review B, 1974. 10(2): p. 676.
4. Kang, B., et al., AlGaN/Gan-Based Metal–Oxide–Semiconductor Diode-Based Hydrogen Gas Sensor. Applied Physics Letters, 2004. 84(7): p. 1123-1125.
5. Asif Khan, M., et al., High Electron Mobility Transistor Based On A GaN?Alx Ga1? x N Heterojunction. Applied Physics Letters, 1993. 63(9): p. 1214-1215.
6. Neufeld, C.J., et al., High Quantum Efficiency InGaN/GaN Solar Cells With 2.95 Ev Band Gap. Applied Physics Letters, 2008. 93(14): p. 143502.
7. Akasaki, I., et al., Photoluminescence Of Mg-Doped P-Type GaN And Electroluminescence Of GaN PN Junction LED. Journal Of Luminescence, 1991. 48: p. 666-670.
8. Lossev, O., CII. Luminous Carborundum Detector And Detection Effect And Oscillations With Crystals. The London, Edinburgh, And Dublin Philosophical Magazine And Journal Of Science, 1928. 6(39): p. 1024-1044.
9. Patel, N.V., Nobel Shocker: RCA Had The First Blue LED In 1972. IEEE Spectrum, Online Article, 2014.
10. Yoshida, S., S. Misawa, and S. Gonda, Improvements On The Electrical And Luminescent Properties Of Reactive Molecular Beam Epitaxially Grown GaN Films By Using AlN?Coated Sapphire Substrates. Applied Physics Letters, 1983. 42(5): p. 427-429.
11. Nakamura, S., GaN Growth Using GaN Buffer Layer. Japanese Journal Of Applied Physics, 1991. 30(10A): p. L1705.
12. Nakamura, S., T. Mukai, and M. Senoh, Candela?Class High?Brightness InGaN/AlGaN Double?Heterostructure Blue?Light?Emitting Diodes. Applied Physics Letters, 1994. 64(13): p. 1687-1689.
13. Huh, C., et al., Improvement In Light-Output Efficiency Of InGaN/GaN Multiple-Quantum Well Light-Emitting Diodes By Current Blocking Layer. Journal Of Applied Physics, 2002. 92(5): p. 2248-2250.
14. Jeon, S.-R., et al., Lateral Current Spreading In GaN-Based Light-Emitting Diodes Utilizing Tunnel Contact Junctions. Applied Physics Letters, 2001. 78(21): p. 3265-3267.
15. Nakamura, S., et al., High-Brightness InGaN Blue, Green And Yellow Light-Emitting Diodes With Quantum Well Structures. Japanese Journal Of Applied Physics, 1995. 34(7A): p. L797.
16. Kim, H., et al., Modeling Of A GaN-Based Light-Emitting Diode For Uniform Current Spreading. Applied Physics Letters, 2000. 77(12): p. 1903-1904.
17. Chuang, S. and C. Chang, A Band-Structure Model Of Strained Quantum-Well Wurtzite Semiconductors. Semiconductor Science And Technology, 1997. 12(3): p. 252.
18. Lee, Y.-J., et al., Enhancing The Output Power Of GaN-Based Leds Grown On Wet-Etched Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2006. 18(10): p. 1152-1154.
19. Wuu, D., et al., Enhanced Output Power Of Near-Ultraviolet InGaN-GaN LEDs Grown On Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2005. 17(2): p. 288-290.
20. Fujii, T., et al., Increase In The Extraction Efficiency Of GaN-Based Light-Emitting Diodes Via Surface Roughening. Applied Physics Letters, 2004. 84(6): p. 855-857.
21. Lee, T.-X., et al., Light Extraction Analysis Of GaN-Based Light-Emitting Diodes With Surface Texture And/Or Patterned Substrate. Optics Express, 2007. 15(11): p. 6670-6676.
22. Wuu, D., et al., Defect Reduction And Efficiency Improvement Of Near-Ultraviolet Emitters Via Laterally Overgrown GaN On A GaN/Patterned Sapphire Template. Applied Physics Letters, 2006. 89(16): p. 161105.
23. Li, Y., et al., Defect-Reduced Green GaInN/GaN Light-Emitting Diode On Nanopatterned Sapphire. Applied Physics Letters, 2011. 98(15): p. 151102.
24. Hirayama, H., et al., 227 nm Algan Light-Emitting Diode With 0.15 mW Output Power Realized Using A Thin Quantum Well And AlN buffer With Reduced Threading Dislocation Density. Applied Physics Express, 2008. 1(5): p. 051101.
25. Liu, G., et al., Efficiency-Droop Suppression By Using Large-Bandgap AlGaInN thin Barrier Layers In InGaN Quantum-Well Light-Emitting Diodes. IEEE Photonics Journal, 2013. 5(2): p. 2201011-2201011.
26. Choi, S., et al., Improvement Of Peak Quantum Efficiency And Efficiency Droop In III-Nitride Visible Light-Emitting Diodes With An InAlN Electron-Blocking Layer. Applied Physics Letters, 2010. 96(22): p. 221105.
27. Zhao, H., et al., Design And Characteristics Of Staggered InGaN Quantum-Well Light-Emitting Diodes In The Green Spectral Regime. IET Optoelectronics, 2009. 3(6): p. 283-295.
28. Takeuchi, T., et al., Quantum-Confined Stark Effect Due To Piezoelectric Fields In GaInN Strained Quantum Wells. Japanese Journal Of Applied Physics, 1997. 36(4A): p. L382.
29. Ryou, J.-H., et al., Control Of Quantum-Confined Stark Effect In InGaN-Based Quantum Wells. IEEE Journal Of Selected Topics In Quantum Electronics, 2009. 15(4): p. 1080-1091.
30. Kuokstis, E., et al., Polarization Effects In Photoluminescence Of C-And M-Plane GaN/AlGaN Multiple Quantum Wells. Applied Physics Letters, 2002. 81(22): p. 4130-4132.
31. Enya, Y., et al., 531 nm Green Lasing Of InGaN Based Laser Diodes On Semi-Polar {2021} Free-Standing GaN Substrates. Applied Physics Express, 2009. 2(8): p. 082101.
32. Mukai, T. and S. Nakamura, Ultraviolet InGaN And GaN single-Quantum-Well-Structure Light-Emitting Diodes Grown On Epitaxially Laterally Overgrown GaN Substrates. Japanese Journal Of Applied Physics, 1999. 38(10R): p. 5735.
33. Funato, M., et al., Blue, Green, And Amber InGaN/GaN light-Emitting Diodes On Semipolar {11-22} GaN Bulk Substrates. Japanese Journal Of Applied Physics, 2006. 45(7L): p. L659.
34. Chang, S.-J., et al., InGaN-GaN Multiquantum-Well Blue And Green Light-Emitting Diodes. IEEE Journal Of Selected Topics In Quantum Electronics, 2002. 8(2): p. 278-283.
35. Humphreys, C.J., Does In form In-Rich Clusters In InGaN Quantum Wells? Philosophical Magazine, 2007. 87(13): p. 1971-1982.
36. Bando, K., et al., Development Of High-Bright And Pure-White LED Lamps. Journal Of Light & Visual Environment, 1998. 22(1): p. 1_2-1_5.
37. Muthu, S., F.J. Schuurmans, and M.D. Pashley, Red, Green, And Blue Leds For White Light Illumination. IEEE Journal Of Selected Topics In Quantum Electronics, 2002. 8(2): p. 333-338.
38. Wu, H., et al., Three-Band White Light From InGaN-Based Blue LED Chip Precoated With Green/Red Phosphors. IEEE Photonics Technology Letters, 2005. 17(6): p. 1160-1162.
39. Sheu, J.-K., et al., White-Light Emission From Near UV InGaN-GaN LED Chip Precoated With Blue/Green/Red Phosphors. IEEE Photonics Technology Letters, 2003. 15(1): p. 18-20.
40. Bernanose, A., M. Comte, and P. Vouaux, A New Method Of Emission Of Light By Certain Organic Compounds. J. Chim. Phys, 1953. 50: p. 64-68.
41. Kallmann, H. and M. Pope, Positive Hole Injection Into Organic Crystals. The Journal Of Chemical Physics, 1960. 32(1): p. 300-301.
42. Kallmann, H. and M. Pope, Bulk Conductivity In Organic Crystals. Nature, 1960. 186(4718): p. 31.
43. Shirakawa, H., et al., Synthesis Of Electrically Conducting Organic Polymers: Halogen Derivatives Of Polyacetylene,(CH) x. Journal Of The Chemical Society, Chemical Communications, 1977(16): p. 578-580.
44. Tang, C.W. and S.A. VanSlyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
45. Yersin, H., Triplet Emitters For OLED Applications. Mechanisms Of Exciton Trapping And Control Of Emission Properties, In Transition Metal And Rare Earth Compounds. 2004, Springer. p. 1-26.
46. Kinder, L., et al. Structural Ordering In F8T2 Polyfluorene Thin Film Transistors. In Organic Field Effect Transistors II. 2003. International Society For Optics And Photonics.
47. Sakamoto, K., K. Miki, and K. Usami, Polyimide Photo-Alignment Films Applicable To Poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-co-bithiophene]. Molecular Crystals And Liquid Crystals, 2007. 475(1): p. 33-43.
48. Gather, M.C. and D.D. Bradley, An Improved Optical Method For Determining The Order Parameter In Thin Oriented Molecular Films And Demonstration Of A Highly Axial Dipole Moment For The Lowest Energy π–π* Optical Transition In Poly (9, 9?dioctylfluorene?co?bithiophene). Advanced Functional Materials, 2007. 17(3): p. 479-485.
49. Sirringhaus, H., et al., Mobility Enhancement In Conjugated Polymer Field-Effect Transistors Through Chain Alignment In A Liquid-Crystalline Phase. Applied Physics Letters, 2000. 77(3): p. 406-408.
50. Kinder, L., J. Kanicki, and P. Petroff, Structural Ordering And Enhanced Carrier Mobility In Organic Polymer Thin Film Transistors. Synthetic Metals, 2004. 146(2): p. 181-185.
51. Hide, F., et al., White Light From InGaN/Conjugated Polymer Hybrid Light-Emitting Diodes. Applied Physics Letters, 1997. 70(20): p. 2664-2666.
52. Bolink, H.J., et al., Air Stable Hybrid Organic-Inorganic Light Emitting Diodes Using ZnO As The Cathode. Applied Physics Letters, 2007. 91(22): p. 223501.
53. Sessolo, M. and H.J. Bolink, Hybrid Organic–Inorganic Light?Emitting Diodes. Advanced Materials, 2011. 23(16): p. 1829-1845.
54. Belton, C., et al., New Light From Hybrid Inorganic–Organic Emitters. Journal Of Physics D: Applied Physics, 2008. 41(9): p. 094006.
55. Kearwell, A. and F. Wilkinson, Transfer And Storage Of Energy By Molecules. Vol. 1. 1969: Interscience.
56. Levermore, P.A., et al., Organic Light?Emitting Diodes Based On Poly (9, 9?dioctylfluorene?co?bithiophene)(F8T2). Advanced Functional Materials, 2009. 19(6): p. 950-957.
57. Kumakura, K., et al., Minority Carrier Diffusion Length In GaN: Dislocation Density And Doping Concentration Dependence. Applied Physics Letters, 2005. 86(5): p. 052105.
58. Maruska, H.a. and J. Tietjen, The Preparation And Properties Of Vapor?Deposited Single?Crystal?Line GaN. Applied Physics Letters, 1969. 15(10): p. 327-329.
59. Han, S.-H., et al., Effect Of Electron Blocking Layer On Efficiency Droop In InGaN/GaN Multiple Quantum Well Light-Emitting Diodes. Applied Physics Letters, 2009. 94(23): p. 231123.
60. Kim, M.-H., et al., Origin Of Efficiency Droop In GaN-Based Light-Emitting Diodes. Applied Physics Letters, 2007. 91(18): p. 183507.
61. Ho, J.-K., et al., Low-Resistance Ohmic Contacts To P-Type GaN Achieved By The Oxidation Of Ni/Au Films. Journal Of Applied Physics, 1999. 86(8): p. 4491-4497.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明