參考文獻 |
1. Davydov, V.Y., et al., Band Gap Of Hexagonal InN And InGaN Alloys. Physica Status Solidi (B), 2002. 234(3): p. 787-795.
2. Yim, W., et al., Epitaxially Grown AlN And Its Optical Band Gap. Journal of Applied Physics, 1973. 44(1): p. 292-296.
3. Monemar, B., Fundamental Energy Gap Of GaN From Photoluminescence Excitation Spectra. Physical Review B, 1974. 10(2): p. 676.
4. Kang, B., et al., AlGaN/Gan-Based Metal–Oxide–Semiconductor Diode-Based Hydrogen Gas Sensor. Applied Physics Letters, 2004. 84(7): p. 1123-1125.
5. Asif Khan, M., et al., High Electron Mobility Transistor Based On A GaN?Alx Ga1? x N Heterojunction. Applied Physics Letters, 1993. 63(9): p. 1214-1215.
6. Neufeld, C.J., et al., High Quantum Efficiency InGaN/GaN Solar Cells With 2.95 Ev Band Gap. Applied Physics Letters, 2008. 93(14): p. 143502.
7. Akasaki, I., et al., Photoluminescence Of Mg-Doped P-Type GaN And Electroluminescence Of GaN PN Junction LED. Journal Of Luminescence, 1991. 48: p. 666-670.
8. Lossev, O., CII. Luminous Carborundum Detector And Detection Effect And Oscillations With Crystals. The London, Edinburgh, And Dublin Philosophical Magazine And Journal Of Science, 1928. 6(39): p. 1024-1044.
9. Patel, N.V., Nobel Shocker: RCA Had The First Blue LED In 1972. IEEE Spectrum, Online Article, 2014.
10. Yoshida, S., S. Misawa, and S. Gonda, Improvements On The Electrical And Luminescent Properties Of Reactive Molecular Beam Epitaxially Grown GaN Films By Using AlN?Coated Sapphire Substrates. Applied Physics Letters, 1983. 42(5): p. 427-429.
11. Nakamura, S., GaN Growth Using GaN Buffer Layer. Japanese Journal Of Applied Physics, 1991. 30(10A): p. L1705.
12. Nakamura, S., T. Mukai, and M. Senoh, Candela?Class High?Brightness InGaN/AlGaN Double?Heterostructure Blue?Light?Emitting Diodes. Applied Physics Letters, 1994. 64(13): p. 1687-1689.
13. Huh, C., et al., Improvement In Light-Output Efficiency Of InGaN/GaN Multiple-Quantum Well Light-Emitting Diodes By Current Blocking Layer. Journal Of Applied Physics, 2002. 92(5): p. 2248-2250.
14. Jeon, S.-R., et al., Lateral Current Spreading In GaN-Based Light-Emitting Diodes Utilizing Tunnel Contact Junctions. Applied Physics Letters, 2001. 78(21): p. 3265-3267.
15. Nakamura, S., et al., High-Brightness InGaN Blue, Green And Yellow Light-Emitting Diodes With Quantum Well Structures. Japanese Journal Of Applied Physics, 1995. 34(7A): p. L797.
16. Kim, H., et al., Modeling Of A GaN-Based Light-Emitting Diode For Uniform Current Spreading. Applied Physics Letters, 2000. 77(12): p. 1903-1904.
17. Chuang, S. and C. Chang, A Band-Structure Model Of Strained Quantum-Well Wurtzite Semiconductors. Semiconductor Science And Technology, 1997. 12(3): p. 252.
18. Lee, Y.-J., et al., Enhancing The Output Power Of GaN-Based Leds Grown On Wet-Etched Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2006. 18(10): p. 1152-1154.
19. Wuu, D., et al., Enhanced Output Power Of Near-Ultraviolet InGaN-GaN LEDs Grown On Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2005. 17(2): p. 288-290.
20. Fujii, T., et al., Increase In The Extraction Efficiency Of GaN-Based Light-Emitting Diodes Via Surface Roughening. Applied Physics Letters, 2004. 84(6): p. 855-857.
21. Lee, T.-X., et al., Light Extraction Analysis Of GaN-Based Light-Emitting Diodes With Surface Texture And/Or Patterned Substrate. Optics Express, 2007. 15(11): p. 6670-6676.
22. Wuu, D., et al., Defect Reduction And Efficiency Improvement Of Near-Ultraviolet Emitters Via Laterally Overgrown GaN On A GaN/Patterned Sapphire Template. Applied Physics Letters, 2006. 89(16): p. 161105.
23. Li, Y., et al., Defect-Reduced Green GaInN/GaN Light-Emitting Diode On Nanopatterned Sapphire. Applied Physics Letters, 2011. 98(15): p. 151102.
24. Hirayama, H., et al., 227 nm Algan Light-Emitting Diode With 0.15 mW Output Power Realized Using A Thin Quantum Well And AlN buffer With Reduced Threading Dislocation Density. Applied Physics Express, 2008. 1(5): p. 051101.
25. Liu, G., et al., Efficiency-Droop Suppression By Using Large-Bandgap AlGaInN thin Barrier Layers In InGaN Quantum-Well Light-Emitting Diodes. IEEE Photonics Journal, 2013. 5(2): p. 2201011-2201011.
26. Choi, S., et al., Improvement Of Peak Quantum Efficiency And Efficiency Droop In III-Nitride Visible Light-Emitting Diodes With An InAlN Electron-Blocking Layer. Applied Physics Letters, 2010. 96(22): p. 221105.
27. Zhao, H., et al., Design And Characteristics Of Staggered InGaN Quantum-Well Light-Emitting Diodes In The Green Spectral Regime. IET Optoelectronics, 2009. 3(6): p. 283-295.
28. Takeuchi, T., et al., Quantum-Confined Stark Effect Due To Piezoelectric Fields In GaInN Strained Quantum Wells. Japanese Journal Of Applied Physics, 1997. 36(4A): p. L382.
29. Ryou, J.-H., et al., Control Of Quantum-Confined Stark Effect In InGaN-Based Quantum Wells. IEEE Journal Of Selected Topics In Quantum Electronics, 2009. 15(4): p. 1080-1091.
30. Kuokstis, E., et al., Polarization Effects In Photoluminescence Of C-And M-Plane GaN/AlGaN Multiple Quantum Wells. Applied Physics Letters, 2002. 81(22): p. 4130-4132.
31. Enya, Y., et al., 531 nm Green Lasing Of InGaN Based Laser Diodes On Semi-Polar {2021} Free-Standing GaN Substrates. Applied Physics Express, 2009. 2(8): p. 082101.
32. Mukai, T. and S. Nakamura, Ultraviolet InGaN And GaN single-Quantum-Well-Structure Light-Emitting Diodes Grown On Epitaxially Laterally Overgrown GaN Substrates. Japanese Journal Of Applied Physics, 1999. 38(10R): p. 5735.
33. Funato, M., et al., Blue, Green, And Amber InGaN/GaN light-Emitting Diodes On Semipolar {11-22} GaN Bulk Substrates. Japanese Journal Of Applied Physics, 2006. 45(7L): p. L659.
34. Chang, S.-J., et al., InGaN-GaN Multiquantum-Well Blue And Green Light-Emitting Diodes. IEEE Journal Of Selected Topics In Quantum Electronics, 2002. 8(2): p. 278-283.
35. Humphreys, C.J., Does In form In-Rich Clusters In InGaN Quantum Wells? Philosophical Magazine, 2007. 87(13): p. 1971-1982.
36. Bando, K., et al., Development Of High-Bright And Pure-White LED Lamps. Journal Of Light & Visual Environment, 1998. 22(1): p. 1_2-1_5.
37. Muthu, S., F.J. Schuurmans, and M.D. Pashley, Red, Green, And Blue Leds For White Light Illumination. IEEE Journal Of Selected Topics In Quantum Electronics, 2002. 8(2): p. 333-338.
38. Wu, H., et al., Three-Band White Light From InGaN-Based Blue LED Chip Precoated With Green/Red Phosphors. IEEE Photonics Technology Letters, 2005. 17(6): p. 1160-1162.
39. Sheu, J.-K., et al., White-Light Emission From Near UV InGaN-GaN LED Chip Precoated With Blue/Green/Red Phosphors. IEEE Photonics Technology Letters, 2003. 15(1): p. 18-20.
40. Bernanose, A., M. Comte, and P. Vouaux, A New Method Of Emission Of Light By Certain Organic Compounds. J. Chim. Phys, 1953. 50: p. 64-68.
41. Kallmann, H. and M. Pope, Positive Hole Injection Into Organic Crystals. The Journal Of Chemical Physics, 1960. 32(1): p. 300-301.
42. Kallmann, H. and M. Pope, Bulk Conductivity In Organic Crystals. Nature, 1960. 186(4718): p. 31.
43. Shirakawa, H., et al., Synthesis Of Electrically Conducting Organic Polymers: Halogen Derivatives Of Polyacetylene,(CH) x. Journal Of The Chemical Society, Chemical Communications, 1977(16): p. 578-580.
44. Tang, C.W. and S.A. VanSlyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
45. Yersin, H., Triplet Emitters For OLED Applications. Mechanisms Of Exciton Trapping And Control Of Emission Properties, In Transition Metal And Rare Earth Compounds. 2004, Springer. p. 1-26.
46. Kinder, L., et al. Structural Ordering In F8T2 Polyfluorene Thin Film Transistors. In Organic Field Effect Transistors II. 2003. International Society For Optics And Photonics.
47. Sakamoto, K., K. Miki, and K. Usami, Polyimide Photo-Alignment Films Applicable To Poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-co-bithiophene]. Molecular Crystals And Liquid Crystals, 2007. 475(1): p. 33-43.
48. Gather, M.C. and D.D. Bradley, An Improved Optical Method For Determining The Order Parameter In Thin Oriented Molecular Films And Demonstration Of A Highly Axial Dipole Moment For The Lowest Energy π–π* Optical Transition In Poly (9, 9?dioctylfluorene?co?bithiophene). Advanced Functional Materials, 2007. 17(3): p. 479-485.
49. Sirringhaus, H., et al., Mobility Enhancement In Conjugated Polymer Field-Effect Transistors Through Chain Alignment In A Liquid-Crystalline Phase. Applied Physics Letters, 2000. 77(3): p. 406-408.
50. Kinder, L., J. Kanicki, and P. Petroff, Structural Ordering And Enhanced Carrier Mobility In Organic Polymer Thin Film Transistors. Synthetic Metals, 2004. 146(2): p. 181-185.
51. Hide, F., et al., White Light From InGaN/Conjugated Polymer Hybrid Light-Emitting Diodes. Applied Physics Letters, 1997. 70(20): p. 2664-2666.
52. Bolink, H.J., et al., Air Stable Hybrid Organic-Inorganic Light Emitting Diodes Using ZnO As The Cathode. Applied Physics Letters, 2007. 91(22): p. 223501.
53. Sessolo, M. and H.J. Bolink, Hybrid Organic–Inorganic Light?Emitting Diodes. Advanced Materials, 2011. 23(16): p. 1829-1845.
54. Belton, C., et al., New Light From Hybrid Inorganic–Organic Emitters. Journal Of Physics D: Applied Physics, 2008. 41(9): p. 094006.
55. Kearwell, A. and F. Wilkinson, Transfer And Storage Of Energy By Molecules. Vol. 1. 1969: Interscience.
56. Levermore, P.A., et al., Organic Light?Emitting Diodes Based On Poly (9, 9?dioctylfluorene?co?bithiophene)(F8T2). Advanced Functional Materials, 2009. 19(6): p. 950-957.
57. Kumakura, K., et al., Minority Carrier Diffusion Length In GaN: Dislocation Density And Doping Concentration Dependence. Applied Physics Letters, 2005. 86(5): p. 052105.
58. Maruska, H.a. and J. Tietjen, The Preparation And Properties Of Vapor?Deposited Single?Crystal?Line GaN. Applied Physics Letters, 1969. 15(10): p. 327-329.
59. Han, S.-H., et al., Effect Of Electron Blocking Layer On Efficiency Droop In InGaN/GaN Multiple Quantum Well Light-Emitting Diodes. Applied Physics Letters, 2009. 94(23): p. 231123.
60. Kim, M.-H., et al., Origin Of Efficiency Droop In GaN-Based Light-Emitting Diodes. Applied Physics Letters, 2007. 91(18): p. 183507.
61. Ho, J.-K., et al., Low-Resistance Ohmic Contacts To P-Type GaN Achieved By The Oxidation Of Ni/Au Films. Journal Of Applied Physics, 1999. 86(8): p. 4491-4497. |