博碩士論文 102223050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.102.187
姓名 王思儒(Szu-Ju Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 透過原位創新合成法封裝微生物於類沸石咪唑骨架材料(ZIF-90)之相關研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,許多功能性細菌或微生物已經被研究並用於監測或改善環境問題,而當微生物遭遇紫外線、極端溫度、酸鹼環境或抗生素等威脅,將會使細胞生命力降低甚至死亡,而影響微生物的工作效率,所以常利用具生物相容性的材料塗層於微生物加強其抵抗惡劣環境的能力,目前已推進至“Cyborg Cell”的時代,常用的材料包括金屬奈米顆粒、二氧化矽、碳酸鈣等無機物,提供微生物堅固的保護層。與其他材料相比金屬有機骨架材料 (MOFs) 因具規則排列的孔洞以及其晶體大小的可調控性和水熱穩定性,為近年來新興材料之一。本研究將MOFs與微生物結合成生物複合材料,利用ZIF-90作為外殼保護大腸桿菌,探討封裝於微米級單晶ZIF-90內的大腸桿菌抵擋惡劣環境的能力。結果顯示,利用掃描式電子顯微鏡鑑定其粒徑大小約7-8微米;更進一步以共軛焦雷射掃描顯微鏡證實大腸桿菌成功地被封裝於金屬有機骨架材料中(E. coli@ZIF-90)。將E. coli@ZIF-90置於抗生素—氨苄青黴素的環境測試,證明藉由ZIF-90的孔洞 (3.5 Å) 選擇性抵抗外部的氨苄青黴素 (4.2×7.1×10.9 Å3) 保護大腸桿菌。此外也使用奈米級多晶ZIF-90或ZIF-8塗層於大腸桿菌表面,並從掃描式電子顯微鏡的影像進行觀察鑑定,但因合成環境嚴苛使大腸桿菌的存活率極低,未來仍需要改善合成環境及探討其存活率,藉以比較微米級單晶封裝與奈米級多晶塗層之差異。
摘要(英) In recent years, functional bacteria or microorganisms have been studied and used as biosensor to overcome environmental problems. Microorganisms have been armored by biocompatible materials with functionalization to resist harsh environments such as ultraviolet radiation, extreme temperatures, acid or base and antibiotics, and pushed the application of microorganism into the era of the “cyborg cells”. Comparing Metal Organic Frameworks (MOFs) with common materials like metal nanoparticles, silica or calcium carbonate, the MOFs has regular pore structure, tunable crystal size and high hydrothermal stability. Herein, we based on our previous reported that a de novo approach, i.e., synthesis under water and mild conditions, for encapsulating the Escherichia coli (E. coli) into ZIF-90 single crystals, E. coli@ZIF-90, as protective structure against harsh conditions. Spectral analysis such as scanning electron microscopy (SEM) images indicated that the morphology of biocomposites are uniform crystals with particle size of 7−8 μm. Moreover, the confocal microscopy was carried out to confirm that the E. coli were embedded in ZIF-90 crystals which provided shelter for the biocomposites against antibiotics. Consequently, E. coli could readily regain vitality after the removal of MOF protection. In addition, making a comparison between single crystals of E. coli@ZIF-90 and E. coli biocomposites coated by nanoscaled polycrystalline ZIF-90/ZIF-8; however, the survival rate of E. coli was low probably due to the harsh condition for coating by polycrystalline MOFs. Thus, the optimal synthetic condition for enhancing the vitality of E. coli which is protected by polycrystalline ZIF-90/ZIF-8 need to be further studied in the near future.
關鍵字(中) ★ 金屬有機骨架材料
★ 大腸桿菌
★ 生物複合材料
★ 類沸石咪唑骨架材料
關鍵字(英)
論文目次 中文摘要 I
Abstract II
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 3
1-3 類沸石咪唑骨架材料-90 4
1-4 微生物 6
1-5 大腸桿菌 (Escherichia coli) 8
1-6 質體 (Plasmid) 9
1-7 賽博格 (Cyborg) 11
1-8 生物複合金屬有機骨架材料 12
1-9 研究動機與目的 13
第二章 實驗部分 14
2-1 實驗藥品及材料 14
2-2 實驗儀器 16
2-3 實驗儀器與方法 17
2-3-1 粉末X光繞射儀 (Powder X-Ray Diffraction, PXRD)
17
2-3-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)
18
2-3-3 熱重分析儀 (Thermogravimetric Analyzer, TGA)
19
2-3-4 螢光顯微鏡 (Fluorescence Microscopy) 20
2-3-5 共軛焦雷射掃描顯微鏡 (Confocal Microscopy) 21
2-3-6 菌落聚合酶鏈鎖反應 (Colony Polymerase Chain Reaction, PCR) 22
2-3-7 DNA膠體電泳確認目標基因片段 24
2-3-8 攜帶型分光光度計 (Ultrospec 10 Cell Density Meter)
24
2-4 實驗步驟 27
2-4-1 培養大腸桿菌 27
2-4-2 類沸石咪唑骨架材料-90封裝大腸桿菌相關之實驗步驟 (E. coli@ZIF-90) 31
2-4-3 奈米級多晶類沸石咪唑骨架材料塗層於大腸桿菌表面之相關實驗步驟 35
第三章 結果與討論 39
3-1 微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 之相關鑑定 39
3-1-1 粉末X光繞射鑑定結果 39
3-1-2 掃描式電子顯微鏡鑑定結果 40
3-1-3 熱重分析鑑定結果 41
3-1-4 螢光顯微鏡與共軛焦顯微鏡鑑定結果 42
3-1-5 鹽酸與乙二胺四乙酸對大腸桿菌之生長測試 44
3-1-6 Ampicillin對大腸桿菌之生長測試 45
3-1-7 固態培養基 (Agar Plate) &瓊脂膠體 (Agarose Gel) 之菌落測試 46
3-2 奈米級多晶類沸石咪唑骨架材料塗層於大腸桿菌表面之相關鑑定
49
3-2-1 粉末X光繞射鑑定結果 49
3-2-2 掃描式電子顯微鏡鑑定結果 50
3-2-3 奈米級多晶類沸石咪唑骨架材料-90與奈米級多晶類沸石咪唑骨架材料-8塗層於大腸桿菌表面之活性鑑定 52
3-2-4 調控甘油與叔丁醇濃度合成不同尺度之奈米級類沸石咪唑骨架材料-90之討論 53
第四章 結論 56
第五章 參考文獻 57
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703.
2. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423, 705.
3. Huo, J.; Brightwell, M.; El Hankari, S.; Garai, A.; Bradshaw, D., A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. Journal of Materials Chemistry A 2013, 1 (48), 15220-15223.
4. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
5. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater. 2009, 21 (13), 2580-2582.
6. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
7. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
8. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, (31), 3642-3644.
9. Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63 (1), 78-80.
10. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112 (2), 933-969.
11. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300 (5622), 1127-1129.
12. DeCoste, J. B.; Weston, M. H.; Fuller, P. E.; Tovar, T. M.; Peterson, G. W.; LeVan, M. D.; Farha, O. K., Metal–Organic Frameworks for Oxygen Storage. Angew. Chem. Int. Ed. 2014, 53 (51), 14092-14095.
13. Li, J. R.; Kuppler, R. J.; Zhou, H. C., Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2009, 38 (5), 1477-504.
14. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 2012, 112 (2), 1196-1231.
15. Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G., Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angew. Chem. Int. Ed. 2008, 47 (22), 4144-4148.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125.
17. Wu, M. X.; Yang, Y. W., Metal–Organic Framework (MOF)‐Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29 (23), 1606134.
18. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457.
19. Shimizu, G. K. H.; Taylor, J. M.; Kim, S., Proton Conduction with Metal-Organic Frameworks. Science 2013, 341 (6144), 354-355.
20. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 2015, 6, 7240.
21. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.
22. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130 (38), 12626-12627.
23. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure and Applied Chemistry, 1972; Vol. 31, p 577.
24. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. W., Water‐Based Synthesis of Zeolitic Imidazolate Framework‐90 (ZIF‐90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
25. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
26. Gilliland, S. E., Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology Letters 1990, 87 (1), 175-188.
27. D′Aoust, J.-Y., Salmonella and the international food trade. International Journal of Food Microbiology 1994, 24 (1), 11-31.
28. Catry, B.; Van Duijkeren, E.; Pomba, M. C.; Greko, C.; Moreno, M. A.; PyÖRÄLÄ, S.; RuŽAuskas, M.; Sanders, P.; Threlfall, E. J.; Ungemach, F.; TÖRneke, K.; MuŇOz-Madero, C.; Torren-Edo, J., Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiology and Infection 2010, 138 (5), 626-644.
29. Ligon, B. L., Penicillin: its discovery and early development. Seminars in Pediatric Infectious Diseases 2004, 15 (1), 52-57.
30. Taubenberger, J. K.; Morens, D. M., The Pathology of Influenza Virus Infections. Annual review of pathology 2008, 3, 499-522.
31. Liang, T. J., Hepatitis B: The Virus and Disease. Hepatology (Baltimore, Md.) 2009, 49 (5 Suppl), S13-S21.
32. Gallo, R. C.; Montagnier, L., The Discovery of HIV as the Cause of AIDS. New England Journal of Medicine 2003, 349 (24), 2283-2285.
33. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R., Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007, 189 (23), 8746-9.
34. Goeddel, D. V.; Kleid, D. G.; Bolivar, F.; Heyneker, H. L.; Yansura, D. G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A. D., Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences of the United States of America 1979, 76 (1), 106-110.
35. Date, A.; Pasini, P.; Daunert, S., Construction of Spores for Portable Bacterial Whole-Cell Biosensing Systems. Analytical Chemistry 2007, 79 (24), 9391-9397.
36. Harms, H., Wells, M.C. & van der Meer, J.R., Whole-cell living biosensors—are they ready for environmental application? Appl. Microbiol. Biotechnol. 2006, 70, 273-280.
37. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J., How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010, 8 (6), 423-35.
38. Rosano, G. L.; Ceccarelli, E. A., Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 2014, 5 (172).
39. Biology 2430 Lecture Notes https://iweb.langara.bc.ca/biology/mario/Biol2430notes/biol2430chap17.html.
40. Fakhrullin, R. F.; Zamaleeva, A. I.; Minullina, R. T.; Konnova, S. A.; Paunov, V. N., Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chemical Society Reviews 2012, 41 (11), 4189-4206.
41. Berry, V.; Saraf, R. F., Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem Int Ed Engl 2005, 44 (41), 6668-73.
42. Swiston, A. J.; Cheng, C.; Um, S. H.; Irvine, D. J.; Cohen, R. E.; Rubner, M. F., Surface Functionalization of Living Cells with Multilayer Patches. Nano Letters 2008, 8 (12), 4446-4453.
43. Mansouri, S.; Merhi, Y.; Winnik, F. M.; Tabrizian, M., Investigation of Layer-by-Layer Assembly of Polyelectrolytes on Fully Functional Human Red Blood Cells in Suspension for Attenuated Immune Response. Biomacromolecules 2011, 12 (3), 585-592.
44. Khoramzadeh, E.; Nasernejad, B.; Halladj, R., Mercury biosorption from aqueous solutions by Sugarcane Bagasse. Journal of the Taiwan Institute of Chemical Engineers 2013, 44 (2), 266-269.
45. Safarik, I.; Rego, L. F. T.; Borovska, M.; Mosiniewicz-Szablewska, E.; Weyda, F.; Safarikova, M., New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology 2007, 40 (6), 1551-1556.
46. Dayi, Z.; F., F. R.; Mustafa, Ö.; Hui, W.; Jian, W.; N., P. V.; Guanghe, L.; E., H. W., Functionalization of whole‐cell bacterial reporters with magnetic nanoparticles. Microbial Biotechnology 2011, 4 (1), 89-97.
47. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
48. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P., Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Adv Mater 2016, 28 (36), 7910-7914.
49. Shaobo, L.; Madushani, D.; P., W. R.; Yixin, R.; M., T. C.; A., S. R.; J., G. J., Template‐Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie International Edition 2016, 55 (36), 10691-10696.
50. Fang, J. M.; Leng, F.; Zhao, X. J.; Hu, X. L.; Li, Y. F., Metal-organic framework MIL-101 as a low background signal platform for label-free DNA detection. Analyst 2014, 139 (4), 801-806.
51. Ricco, R.; Pfeiffer, C.; Sumida, K.; Sumby, C. J.; Falcaro, P.; Furukawa, S.; Champness, N. R.; Doonan, C. J., Emerging applications of metal-organic frameworks. CrystEngComm 2016, 18 (35), 6532-6542.
52. Hu, X.; Cebe, P.; Weiss, A. S.; Omenetto, F.; Kaplan, D. L., Protein-based composite materials. Materials Today 2012, 15 (5), 208-215.
53. Mehrotra, P., Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research 2016, 6 (2), 153-159.
54. Wang, B.; Liu, P.; Tang, Y.; Pan, H.; Xu, X.; Tang, R., Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion. PLoS One 2010, 5 (4), e9963.
55. Yang, S. H.; Hong, D.; Lee, J.; Ko, E. H.; Choi, I. S., Artificial Spores: Cytocompatible Encapsulation of Individual Living Cells within Thin, Tough Artificial Shells. Small 2013, 9 (2), 178-186.
56. Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R., Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization. Angew. Chem. Int. Ed. 2008, 47 (19), 3560-3564.
57. Ricco, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P., Metal-Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 2018, 12 (1), 13-23.
58. Science topia https://www.sciencetopia.net/physics/braggs-law.
59. Zhu, F. Y.; Wang, Q. Q.; Zhang, X. S.; Hu, W.; Zhao, X.; Zhang, H. X., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology 2014, 25 (18), 185705.
60. Sanderson, M. J.; Smith, I.; Parker, I.; Bootman, M. D., Fluorescence Microscopy. Cold Spring Harbor protocols 2014, 2014 (10), pdb.top071795-pdb.top071795.
61. Phases of E. coli growth http://rtd-test-project.readthedocs.io/en/latest/Grow%20Ecoli%20cells.html.
62. Birnboim, H. C.; Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 1979, 7 (6), 1513-1523.
63. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Adv. 2014, 4 (95), 52883-52886.
64. Simon, F.; L., P. S., EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Advances in Wound Care 2015, 4 (7), 415-421.
65. Lo, Y.; Lam, C. H.; Chang, C.-W.; Yang, A.-C.; Kang, D.-Y., Polymorphism/pseudopolymorphism of metal-organic frameworks composed of zinc(ii) and 2-methylimidazole: synthesis, stability, and application in gas storage. RSC Advances 2016, 6 (92), 89148-89156.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2018-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明