博碩士論文 105324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.144.189.177
姓名 范雅淇(Ya-Chi Fan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高溶解性化合物的結晶製程設計:十二烷基硫酸鈉
(Crystallization Process Design of a Highly Soluble Compound: Sodium Dodecyl Sulfate (SDS))
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在文獻回顧中,蒸發結晶、反溶劑結晶以及冷卻結晶法為分離及純化常見之技術,但多為各別探討,較少文獻針對此三種結晶製程合併及放大規模的討論。因此,本研究的目的是發展對於高溶解度分子:十二烷基硫酸鈉(SDS)具有再現性之結晶製備程序,由冷卻結晶、蒸發結晶以及反溶劑結晶法共同組成,並預期能達到理想的產品性質,如產量、顆粒尺寸分佈(PSD)和純度。此合併結晶製程的產率為80.2%至90.2%,其中母液從25℃冷卻至5℃,藉由加入晶種及將丙酮以先慢後快的方式加入的應用,確實可以將PSD改善,其中晶體之平均尺寸為125至177 μm。所產出的晶體皆經過偏振光學顯微鏡(POM)、傅里葉變換紅外光譜(FTIR)、粉末X射線衍射(PXRD)和熱重分析(TGA)完整的鑑定。根據FTIR、PXRD和TGA之檢測結果,產出的SDS與購買的SDS相同。此外,我們也將文獻中提供的SDS-H2O相圖及在蒸發過程中的SDS溶液組成變化進行了相關的研究及比對。
摘要(英) Evaporative, anti-solvent and cooling crystallization are common techniques used in purification and separation, and have been well-studied individually in the literatures. However, there is a few study related to the combination and scaling-up of those three crystallization processes. Therefore, the aim of this research is to develop a reproducible production of a highly water soluble compound: sodium doedecyl sulfate (SDS) through the combined process of evaporative, anti-solvent and cooling crystallization systematically with the desired product attributes such as yield, particle size distribution (PSD) and purity. The yield for the combined crystallization process was 80.2% to 90.2%, where the mother liquor was cooled from 25℃ to 5℃. PSD could indeed be narrowed by applying seeding strategy accompanying with cubic addition of acetone in the combined crystallization process, the mean crystal size was 125 to 177 μm. The produced crystals were also characterized by polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). Based on the results of FTIR, PXRD and TGA, the produced SDS was identical with the purchased SDS. In addition, the variation of composition during evaporation process was investigated experimentally by the SDS-H2O phase diagram provided in the literature.
關鍵字(中) ★ 結晶
★ 製程設計
★ 高溶解性化合物
★ 十二烷基硫酸鈉
關鍵字(英) ★ Crystallization
★ Process Design
★ Highly Soluble Compound
★ Sodium Dodecyl Sulfate (SDS)
論文目次 摘要  i
Abstract  ii
Acknowledgement  iii
Table of Contents  iv
List of Figures  vii
List of Tables  x
Chapter 1 Introduction  1
1.1 Evaporative Crystallization  2
1.2 Antisolvent Crystallization  3
1.3 Cooling Crystallization  3
1.4 Seeding  6
1.5 Sodium Dodecyl Sulfate (SDS)  9
1.6 Conceptual Framework  12
1.7 References  14
Chapter 2 Experimental Materials and Methods  19
2.1 Materials  19
2.1.1 Chemical  19
2.1.2 Solvents  19
2.2 Experimental Methods  21
2.2.1 Initial Solvent Screening  21
2.2.2 Combination of Composition Variation with Phase Diagram during Evaporation Process  22
2.2.3 Determination of the End Point for Evaporation  23
2.2.4 Solubility Measurement of SDS  24
2.2.5 Preparation of Seeds  24
2.2.6 Crystallization Process Design  25
2.2.7 Wet Sieve Analysis Method  29
2.3 Analytical Measurements  30
2.3.1 Thermogravimetric Analysis (TGA)  30
2.3.2 Powder X-ray Diffraction (PXRD)  31
2.3.3 Fourier Transform Infrared (FTIR) Spectroscopy  32
2.3.4 Optical Microscopy (OM)  33
2.3.5 Dynamic Light Scattering (DLS)  34
2.4 References  35
Chapter 3 Results and Discussion  36
3.1 Use Test of SDS  36
3.2 Initial Solvent Screening of SDS  43
3.3 Combination of Composition Variation with Phase Diagram during Evaporation Process  46
3.4 Determination of the End Point for Evaporation  49
3.5 Solubility Test  53
3.6 Seeds Aging  59
3.7 Crystallization Process Design  62
3.8 References  72
Chapter 4 Conclusions and Future Works  75
4.1 Conclusions  75
4.2 Future Works  76
參考文獻 Chapter 1
1. Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9(6), 304-316.
2. El-Yafi, A. K. E.; El-Zein, H. Technical Crystallization for Application in Pharmaceutical Material Engineering: Review Article.Asian J. Pharm. Sci. 2015, 10(4), 238-291.
3. Kougoulos, E.; Jones, A. G.; Jennings, K. H.; Wood-Kaczmar, M. W. Use of Focused Beam Reflectance Measurement (FBRM) and Process Video Imaging (PVI) in A Modified Mixed Suspension Mixed Product Removal (MSMPR) Cooling Crystallizer. J. Cryst. Growth, 2005, 273(3-4), 529-534.
4. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Introduction to Crystallization Issues. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 1-11
5. Zhang, H.; Quon, J.; Alvarez, A. J.; Evans, J.; Myerson, A. S.; Trout, B.Development of Continuous Anti-Solvent/Cooling Crystallization Process Using Cascaded Mixed Suspension, Mixed Product Removal Crystallizers. Org. Process Res. Dev. 2012, 16 (5), 915–924.
6. Acevedo, D.; Kamaraju, V. K.; Glennon, B.; Nagy, Z. K. Modeling and Characterization of an in Situ Wet Mill Operation. Org. Process Res. Dev. 2017, 21 (7), 1069–1079.
7. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Evaporative Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 167-178.
8. Lewis, A.; Seckler, M.; Kramer, H.; van Rosmalen, G. Industrial Crystallization: Fundamentals and Applications. Cambridge University Press, Cambridge, 2015; pp 1-25.
9. Shahidzadeh-Bonn, N.; Rafai, S.; Bonn, D.; Wegdam, G.Salt Crystallization during Evaporation: Impact of Interfacial Properties. Langmuir 2008, 24 (16), 8599–8605.
10. Pacheco, C. R. F.; Frioni, L. S. M.Experimental Results for Evaporation of Sucrose Solution Using a Climbing/Falling Film Plate Evaporator. J. Food Eng. 2004, 64 (4), 471–480.
11. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C. B.Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy Environ. Sci. 2014, 7 (7), 2145–2159.
12. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Antisolvent Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 179-205.
13. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Cooling Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 137-166.
14. Jillavenkatesa, A.; Dapkunas, S. J.; Lum, L. H. Particle Size Characterization. NIST Special Publication 960-1; National Institute of Standards and Technology: Gaithersburg, 2001, pp 1-165.
15. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by in-Process Controls. Org. Process Res. Dev. 2013, 17 (9), 1168–1178.
16. Chen, C. W.; Lee, T. Round Granules of Dimethyl Fumarate by Three-in-One Intensified Process of Reaction, Crystallization, and Spherical Agglomeration in a Common Stirred Tank. Org. Process Res. Dev. 2017, 21 (9), 1326–1339.
17. Wieckhusen, D. Development of Batch Crystallization. In Crystallization: Basic Concepts and Industrial Applications; Beckmann, W. Wiley: Weinheim, 2013; pp 187-202.
18. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Critical Issues in Crystallization Practice. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 101-116.
19. Vedantam, S.; Ranade, V.V. Crystallization: Key Thermodynamic, Kinetic and Hydrodynamic Aspects. Sadhana - Acad. Proc. Eng. Sci. 2013, 38 (6), 1287–1337.
20. Barrett, P.; Smith, B.; Worlitschek, J.; Bracken, V.; O’Sullivan, B.; O’Grady, D. A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Org. Process Res. Dev. 2005, 9 (3), 348–355.
21. Sundell, S.The Crystal Structure of Sodium Dodecyl Sulfate. Acta Chem. Scand. 1977, A31, 799–807.
22. Coiro, V. M.; Mazza, F.; Pochetti, G.Crystal Phases Obtained from Aqueous Solutions of Sodium Dodecyl Sulfate. The Structure of a Monoclinic Phase of Sodium Dodecyl Sulfate Hemihydrate. Acta Crystallogr. 1986, C42 (2), 991–995.
23. Coiro, V. M.; Manigrasso, M.; Mazza, F.; Pochetti, G.Structure of a Triclinic Phase of Sodium Dodecyl Sulfate Monohydrate. A Comparison with Other Sodium Dodecyl Sulfate Crystal Phases. Acta Crystallogr. 1987, C43 (43), 850–854.
24. Kekicheff, P. Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
25. Gloxhuber, C.; Kunster, K. Anionic Surfactants: Biochemistry, Toxicology, Dermatology 2nd ed. New York, 1992.
26. Sodium dodecyl sulfate – Wikipedia. (https://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate) (accessed Dec. 28, 2017).
27. Smith, L. A.; Hammond, R. B.; Roberts, K. J.; Machin, D.; McLeod, G. Determination of the Crystal Structure of Anhydrous Sodium Dodecyl Sulphate Using a Combination of Synchrotron Radiation Powder Diffraction and Molecular Modelling Techniques. J. Mol. Struct. 2000, 554 (2–3), 173–182.
28. Rattes, A. L. R.; Oliveira, W. P. Spray Drying Conditions and Encapsulating Composition Effects on Formation and Properties of Sodium Diclofenac Microparticles. Powder Technol. 2007, 171 (1), 7–14.

Chapter 2
1. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
2. Kekicheff, P.Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
3. O’Grady, D. Advanced Strategies to Control Crystal Size Distribution. Mettler Toledo White Paper, 2016
4. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M.; et al.Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation. Org. Process Res. Dev. 2005, 9 (6), 894–901.
5. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introducing to Spectroscopy: a Guide for Students of Organic Chemistry, 3rd ed.; Thomson Learning, Inc.: Boston, BS, 2001; pp: 45-68.
6. Hiroi, T.; Shibayama, M. Measurement of Particle Size Distribution in Turbid Solutions by Dynamic Light Scattering Microscopy. J. Vis. Exp. 2017, 119, 1–7.

Chapter 3
1. Wang, W.; Lu, H.; Liu, Y.; Leng, J. Sodium Dodecyl Sulfate/Epoxy Composite: Water-Induced Shape Memory Effect and Its Mechanism. J. Mater. Chem. A 2014, 2 (15), 5441-5549.
2. Sundell, S.The Crystal Structure of Sodium Dodecyl Sulfate. Acta Chem. Scand. 1977, A31, 799–807.
3. Coiro, V. M.; Mazza, F.; Pochetti, G.Crystal Phases Obtained from Aqueous Solutions of Sodium Dodecyl Sulfate. The Structure of a Monoclinic Phase of Sodium Dodecyl Sulfate Hemihydrate. Acta Crystallogr. 1986, C42 (2), 991–995.
4. Coiro, V. M.; Manigrasso, M.; Mazza, F.; Pochetti, G.Structure of a Triclinic Phase of Sodium Dodecyl Sulfate Monohydrate. A Comparison with Other Sodium Dodecyl Sulfate Crystal Phases. Acta Crystallogr. 1987, C43 (43), 850–854.
5. Smith, L. A.; Hammond, R. B.; Roberts, K. J.; Machin, D.; McLeod, G.Determination of the Crystal Structure of Anhydrous Sodium Dodecyl Sulphate Using a Combination of Synchrotron Radiation Powder Diffraction and Molecular Modelling Techniques. J. Mol. Struct. 2000, 554 (2–3), 173–182.
6. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
7. Lichtfouse, E.; Schwarzbauer, J.; Robert, D. Pollutant Diseases, Remediation and Recycling, Springer: Switzerland, 2013, pp 277-320
8. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Evaporative Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 167-178.
9. Hoang, H.; Galliero, G. Shear Viscosity of Inhomogeneous Fluids. J. Chem. Phys. 2012, 136 (124902), 1-8.
10. Kekicheff, P. Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
11. Sood, A. K.; Sharma, S.Influence of Organic Solvents and Temperature on the Micellization of Conventional and Gemini Surfactants: A Conductometric Study. Phys. Chem. Liq. 2016, 54 (5), 574–588.
12. Ghosh, S.; Roy, A.; Banik, D.; Kundu, N.; Kuchlyan, J.; Dhir, A.; Sarkar, N.How Does the Surface Charge of Ionic Surfactant and Cholesterol Forming Vesicles Control Rotational and Translational Motion of Rhodamine 6G Perchlorate (R6G ClO4)? Langmuir 2015, 31 (8), 2310–2320.
13. Afzal, M.; Kundu, P.; Das, S.; Ghosh, S.; Chattopadhyay, N. A Promising Strategy for Improved Solubilization of Ionic Drugs Simply by Electrostatic Pushing. RSC Adv. 2017, 7 (69), 43551–43559.
14. Pal, N.; Saxena, N.; Mandal, A.Synthesis, Characterization, and Physicochemical Properties of a Series of Quaternary Gemini Surfactants with Different Spacer Lengths. Colloid Polym. Sci. 2017, 295 (12), 2261–2277.
15. Lee, T.; Lin, M.S. Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering. Crys. Growth Des. 2007, 7 (9), 1803-1810.
16. Reus, M.A.; Guguta, C.; Kramer, H. J. M.; Horst, J. H. Solubility : Importance , Measurements and Applications. Technobis Crystallization Systems White Paper. 2016, 1-8.
17. Park, M.W.; Yeo, S.D. Antisolvent Crystallization of Sulfa Drugs and the Effect of Process Parameters. Sep. Sci. Technol. 2010, 45 (10), 1402–1410.
18. Tao, M.; Wang, Z.; Gong, J.; Hao, H.; Wang, J. Determination of the Solubility, Dissolution Enthalpy, and Entropy of Pioglitazone Hydrochloride (Form II) in Different Pure Solvents. Ind. Eng. Chem. Res. 2013, 52 (8), 3036–3041.
19. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Critical Issues in Crystallization Practice. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 101-116.
20. O’sullivan, B.; Smith, B.; Baramidze, G. Recent Advances for Seeding a Crystallization Process: A Review of Modern Techniques. Mettler Toledo White Paper, 2016.
指導教授 李度(Tu Lee) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明