參考文獻 |
1. Rosen, M. A. Energy sustainability: A pragmatic approach and illustrations. Sustainability. 2009, 1 (1), 55–80.
2. Zalba, B.; Marin, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251–283.
3. Sharma, A.; Tyagi, V.V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318–345.
4. Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems-Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12 (5), 1221–1250.
5. Mallick, K.; Sengupta, A.; Das, S.; Charraraj, S. Modern Mechanical Energy Storage Systems and Technologies. 2016, 5 (02), 727–731.
6. Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ. Convers. Manage. 2004, 45 (9-10), 1597-1615.
7. Sharifi, N. P.; Shaikh, A. A. N.; Sakulich, A. R. Application of phase change materials in gypsum boards to meet building energy conservation goals. Energ. Buildimgs. 2017, 138, 455–467.
8. Johra, H.; Heiselberg, P. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review., Renew. Sustain. Energ. Rev. 2017, 69, 19–32.
9. Liu, F.; Wang, J.; Qian, X. Integrating phase change materials into concrete through microencapsulation using cenospheres. Cem. Concr. Compos. 2017, 80, 317–325.
10. Hassanipour, F.; Lage, J. L. Preliminary experimental study of a bio-inspired, phase-change particle capillary heat exchanger. Int. J. Heat Mass Transf. 2010, 53 (15–16), 3300–3307.
11. Zhang, F.; Zhong, Y.; Yang, X.; Lin, J.; Zhu, Z. Encapsulation of metal-based phase change materials using ceramic shells prepared by spouted bed CVD method., Sol. Energ. Mater. Sol. Cells. 2017, 170, 137–142.
12. Maruoka, N.; Sato, K.; Yagi, J. I.; Akiyama, T. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 2002, 42 (2), 215–219.
13. Yagi, J.; Akiyama, T. Storage of thermal-energy for effective use of waste heat from industries. J. Mater. Process. Technol. 1995, 48 (1–4), 793–804.
14. Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO2 / Fe3O4 hybrid shell as thermoregulatory enzyme carriers?: a novel design of applied energy microsystem for bioapplications., Appl. Energ. 2017, 201, 20–33.
15. Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energ. 1983, 30 (4), 313–332.
16. Lane, G. A. Low temperature heat storage with phase change materials. Int. J. Ambient Eng. 1980, 1 (3), 155–168.
17. Alkan, C.; Sari, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol. Energ. 2008, 82 (2), 118–124.
18. Lee, T.; Chiu, Y. H.; Lee, Y.; Lee, H. L. Thermal properties and structural characterizations of new types of phase change material: anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochim. Acta. 2014, 575, 81–89.
19. Zhang, Z.; Yuan, Y.; Zhang, N.; Cao, X. Thermophysical properties of some fatty acids/surfactants as phase change slurries for thermal energy storage. J. Chem. Eng. Data 2015, 60 (8), 2495–2501.
20. Sundararajan, S.; Samui, A. B.; Kulkarni, P. S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J. Mater. Chem. A. 2017, 5, 18379–18396.
21. Wang, C. L.; Yeh, K. L.; Chen, C. W.; Lee, Y.; Lee, H. L.; Lee, T. A quick-fix design of phase change material by particle blending and spherical agglomeration. Appl. Energ. 2017, 191, 239–250
22. Xie, N.; Huang, Z.; Luo, Z.; Gao, X.; Fang, Y.; Zhang, Z. Inorganic salt hydrate for thermal energy storage. Appl. Sci. 2017, 7 (12), 1317–1335.
23. Sharma, S. D.; Kitano, H.; Sagara, K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ. 2004, 29, 31–64.
24. Nagano, K.; Mochida, T.; Takeda, S.; Doma?ski, R.; Rebow, M. Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 2003, 23 (2), 229–241.
25. Dimaano, M. N. R.; Escoto, A. D. Preliminary assessment of a mixture of capric and lauric acids for low-temperature thermal energy storage. Energy 1998, 23 (5), 421–427.
26. Min, X.; Fang, M.; Huang, Z.; Liu, Y.; Huang, Y.; Wen, R.; Qian, T.; Wu, X. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci. Rep. 2015, 5, 1–11.
27. Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2013, 118, 48–53.
28. Meng, J. Y.; Tang, X. F.; Li, W.; Shi, H. F.; Zhang, X. X. Crystal structure and thermal property of polyethylene glycol octadecyl ether. Thermochim. Acta 2013, 558, 83–86.
29. Feng, Y.; Lan, J.; Ma, P.; Dong, X.; Qu, J.; He, H. Chemical structure and thermal properties of lignin modified with polyethylene glycol during steam explosion. Wood Sci. Technol. 2017, 51 (1), 135–150.
30. Gotoh, Y.; Tsukada, M.; Baba, T.; Minoura, N. Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer (Guildf). 1997, 38 (2), 487–490.
31. Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10–12), 690–696.
32. Memon, S. A.; Lo, T. Y.; Barbhuiya, S. A.; Xu, W. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag. Energy Build. 2013, 62, 360–367.
33. Karaman, S.; Karaipekli, A.; Sar, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2011, 95 (7), 1647–1653.
34. Fang, Y.; Zou, T.; Liang, X.; Wang, S.; Liu, X.; Gao, X.; Zhang, Z. Self-assembly synthesis and properties of microencapsulated n-Tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustain. Chem. Eng. 2017, 5 (4), 3074–3080.
35. Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO2 / Fe3O4 hybrid shell as thermoregulatory enzyme carriers: a novel design of applied energy microsystem for bioapplications. Appl. Energy 2017, 201, 20–33.
36. Ehid, R.; Fleischer, A. S. Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Convers. Manag. 2012, 53 (1), 84–91.
37. Xiao, M.; Feng, B.; Gong, K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers. Manag. 2002, 43 (1), 103–108.
38. Xi, P.; Zhao, T.; Xia, L.; Shu, D.; Ma, M.; Cheng, B. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci. Rep. 2017, 7, 1–9.
39. Feng, L.; Zheng, J.; Yang, H.; Guo, Y.; Li, W.; Li, X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644–650.
40. Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 2012, 14 (38), 13233-13238.
41. Wang, W.; Yang, X.; Fang, Y.; Ding, J. Preparation and performance of form-stable polyethylene glycol / silicon dioxide composites as solid-liquid phase change materials. 2009, 86 (9), 170–174.
42. Chudasama, N. A.; Prasad, K.; Siddhanta, A. K. Agarose functionalization: synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime. Carbohydr. Polym. 2016, 151, 735–742.
43. Sundararajan, S.; Samui, A. B.; Kulkarni, P. S. Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending. Sol. Energy 2017, 144, 32–39.
44. Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2013, 118, 48–53.
45. Siddique, R.; Chahal, N. Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar. Resour. Conserv. Recycl. 2011, 55 (8), 739–744.
46. Ling, T.; Poon, C. Use of phase change materials for thermal energy storage in concrete?: an overview. Constr. Build. Mater. 2013, 46, 55–62
47. Srivastava, V.; Agarwal, V. C.; Kumar, R.; Mehta, P. K. Silica Fume: an admixture for high quality concrete. J. Environ. Nanotechnol. 2013, 2, 53–58.
48. Demirbo?a, R.; Gul, R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003, 33 (5), 723–727.
49. Fo?t, J.; Pavlikova, M.; Zaleska, M.; Pavlik, Z.; Trnik, A.; Jankovsky, O. Preparation of puzzolana active two component composite for latent heat storage. Ceram. – Silikaty. 2016, 60 (4), 291–298.
50. Hoppe, H.; Bachmann, J.; Muhsin, B.; Dru?e, K.-H.; Riedel, I.; Gobsch, G.; Buerhop-Lutz, C.; Brabec, C. J.; Dyakonov, V. The Pozzolanic Reaction of Silica Fume. J. Appl. Phys. 2010, 107 (1), 14-26.
51. Dembovska, L.; Bajare, D.; Pundiene, I.; Vitola, L. Effect of pozzolanic additives on the strength development of high performance concrete. Procedia Eng. 2017, 172, 202–210.
52. Marchon, D.; Flatt, R. J. Mechanisms of cement hydration. Sci. Technol. Concr. Admixtures. 2015, 41 (12), 129–145.
53. Nomure, T.; Okinaka, N.; Akiyama, T. Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 2009, 115 (2), 846-850.
54. Qian, T.; Li, J.; Ma, H.; Yang, J. Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material. Polym. Polym. Compos. 2016, 37 (3), 854–860.
55. Farnand, J. R.; Smith, H. M.; Puddington, I. E. Spherical agglomeration of solids in liquid suspension. Can. J. Chem. Eng. 1961, 39 (2), 94–97.
56. Sirianni, A. F.; Capes, C. E.; Puddington, J. E. Recent experience with the spherical agglomeration process. Can. J. Chem. Eng. 1969, 47 (2), 166–170.
57. Kawashima, Y.; Capes, C. E.; An experimental study of the kinetics od spherical agglomeration in stirred vessel. Powder Technol. 1974, 10(1-2), 85-92
58. Jitkar, S.; Thipparaboina, R.; Chavan, R. B.; Shastri, N. R. Spherical agglomeration of platy crystals: curious case of etodolac. Cryst. Growth Des. 2016, 16 (7), 4034–4042.
59. Varinder, S.; Rathore, M. S. Spherical agglomeration techniques and their evaluation parameters. Int. J. Drug Dev. Res. 2013, 5 (3), 67–76.
60. Tiwari, S.; Verma, P. Spherical crystallization – a novel drug delivery system. Int. J. Pharm. Life Sci. 2011, 2 (9), 1065–1068.
61. Huang, A. Y.; Berg, J. C. Gelation of liquid bridges in spherical agglomeration. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 215 (1–3), 241–252.
62. Kachrimanis, K.; Nikolakakis, I.; Malamataris, S. Spherical crystal agglomeration of ibuprofen by the solvent-change technique in presence of methacrylic polymers. J. Pharm. Sci. 2000, 89 (2), 250–259.
63. Pena, R.; Burcham, C. L.; Jarmer, D. J.; Ramkrishna, D.; Nagy, Z. K. Modeling and optimization of spherical agglomeration in suspension through a coupled population balance model. Chem. Eng. Sci. 2017, 167, 66–77. |