博碩士論文 102324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.226.186.109
姓名 陳彥豪(Yan-Hao Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藉由銀銦合金製備銀粒子/氧化銦混合相及其光電流特性
(Ag particles/In2O3 composite phase by oxidizing Ag-In alloy films and photocurrent characteristics of Ag particles/In2O3)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文研究目的為探討銀粒子/氧化銦歐姆接面(Ohmic contact)的光電流特性。我們透過在800 oC高溫氧氣環境下,熱處理不同成分比例的銀銦合金膜,製備出銀粒子/氧化銦結構,並確認其為歐姆接面。然後在不同光子能量的光源照射下來探討其光電流特性。在光強度固定的情況下,光載子的多寡取決於入射光誘發載子的速率及電子電洞對的生命期(Δn = geτr)。因此,本實驗將從這兩方面進行探討。
實驗結果發現,在紫外光照射下,經過氧氣高溫熱處理製備而成的銀粒子/氧化銦結構具有光電流特性。而藉由磁控濺鍍系統製備的氧化銦薄膜卻不具備光電流特性,但在經過氧氣吸附過程序後,即可量測到光電流。因此,其機制被認為是表面氧氣吸附所造成的內建電場,對電子電洞生命期有提升的效果,而使光電流的效應增加。然而,Ag70In30合金膜製備而得的銀粒子/氧化銦歐姆接面,其光電流較經過表面氧氣吸附的氧化銦薄膜高出兩個數量級。此兩者主體皆為氧化銦薄膜,且經過相同時間與溫度的氧氣熱處理。因此,若假設氧氣吸附對於氧化銦薄膜和銀粒子/氧化銦兩者的電子電洞生命期具有相近的增益效應,而銀粒子/氧化銦結構具有較高的光電流,則可對銀粒子能否增加光誘發載子的速率進行探討。而熱電子效應能夠使金屬銀粒子中的電子獲得能量,並且有機會轉移至氧化銦的導帶,提供額外載子,且此效應使得能吸收的光子能量不必高於氧化銦能隙。所以,我們利用光子能量小於氧化銦能隙的藍光、綠光、和紅光做為激發光源,進行光電流量測,且同樣量測到光電流。
根據上述結果,我們發現銀粒子/氧化銦結構在入射光源光子能量高於或低於氧化銦能隙時,皆能誘發光電流。並證實熱電子效應存在銀粒子/氧化銦歐姆接面結構中,且銀粒子能透過此效應提供額外載子至氧化銦的導帶,而量測到光電流。
摘要(英) The aim of this research is to investigate the photocurrent characteristics of Ag particles/In2O3 Ohmic contact. The Ag particles/In2O3 Ohmic contact was fabricated by Ag-In alloy film with different composition heat-treating at 800 oC in oxygen ambience. The contact of Ag and In2O3 is confirmed be Ohmic contact. Photocurrent characteristics of Ag particles/In2O3 composite structure was researched by using illumination light with different photo energies. Since the photo-carrier generation is determined by the optical generation rate and recombination lifetime (Δn = geτr), the discussion will be focused on these two factors.
The results show that under UV-light illumination, the photocurrent of pure In2O3 thin film with the oxygen adsorption could be enhanced. The mechanism has been reported that surface oxygen adsorption would induce a surface build-in electric field and enhance the life-time of excited electron-hole pairs, which would enhance life time. However, the photocurrent of the Ag particles/In2O3 fabricated by oxidized Ag70In30 alloy film is two orders higher than that of the pure In2O3 thin film. Since the matrix of these two samples are both In2O3, and heat-treat in oxygen ambience at same temperature in the same time, We assume that the effect of the surface oxygen adsorption on the recombination lifetime (τr) is similar to the In2O3 thin film heat-treated at 800 oC and the Ag particles/In2O3 composite structure. Then, we discuss that if the optical generation rate (ge) cound be enhanced by Ag particles.
Hot electron effect of Ag particles can transferring the accumulated energy from incident light to electrons by non-radiative decay, and this process would produce highly energetic electrons, which may have sufficient energy to transport to the conduction band of In2O3 and provide excess carriers for In2O3. Therefore, the photo energy is not necessary higher than the band-gap energy of In2O3, and this was checked by illumination light with the photo energy lower that the band-gap energy of In2O3, the blue-light, green-light, and red-light. And, the photocurrent was also measured.
According to the results, photocurrent is observed that no matter the photo energy of incident light is higher or lower than the band-gap energy of In2O3. It can be proved that the hot-electron effect is applied on the Ag particles/In2O3 Ohmic contact structure, which would cause photo-excited electrons of Ag particles transferr to the conduction band of In2O3, and the excess carrier can be measured as photocurrent.
關鍵字(中) ★ 銀粒子/氧化銦混合相
★ 光電流
★ 表面電漿
★ 歐姆接面
關鍵字(英) ★ Ag particles/In2O3 composite phase
★ photocurrent
★ surface plasma
★ ohmic contact
論文目次 摘要 I
Abstract II
Table of contents IV
List of figures VI
Chapter 1 Introduction 1
1.1 N-type transparent conductive oxide 1
1.2 Properties of Ag particles 3
1.3 Effect of generation rate and recombination lifetime to photo-carriers 5
1.4 Hot-electron effect of metal particles by Localized surface plasmonic resonance 10
Chapter 2 Motivation 12
Chapter 3 Experimental procedure 14
3.1 Fabrication of Ag particle/In2O3 structure 14
3.2 Instrumental analysis of Ag particle/In2O3 structure 16
3.3 Measurement of photocurrent 17
Chapter 4 Structure and photocurrent of Ag particles/In2O3 18
4.1 Instrumental analysis of Ag particle/In2O3 structure 18
4.1-1 Concentration of the Ag-In alloy films 18
4.1-2 SEM surface images and EDX mapping images of Ag particle/In2O3 22
4.1-3 XRD analysis of Ag particle/In2O3 25
4.1-4 XPS analysis of Ag particle/In2O3 29
4.1-5 Resistivity and mobility of Ag particle/In2O3 31
4.2 Effect of photocurrent on Ag particles/In2O3 Ohmic contact 32
4.2-1 Ohmic contact of Ag particles/In2O3 structure 32
4.2-2 Photocurrent induced by UV-light illumination 34
Chapter 5 Mechanism of the photocurrent enhancement 37
5.1 Photocurrent enhanced by the surface build-in electron field 37
5.2 Photocurrent induced by the hot electrons of surface Ag particles 41
5.3 Mechanism of photocurrent on the Ag particles/In2O3 Ohmic contact 45
Chapter 6 Conclusions 49
References 50
參考文獻 1. Kim, J.K., et al., Light?extraction enhancement of GaInN light?emitting diodes by graded?refractive?index indium tin oxide anti?reflection contact. Advanced materials, 2008. 20(4): p. 801-804.
2. Braun, A., et al., Localized irradiation effects on tunnel diode transitions in multi-junction concentrator solar cells. Solar Energy Materials and Solar Cells, 2009. 93(9): p. 1692-1695.
3. Yamaguchi, M., et al., Multi-junction III–V solar cells: current status and future potential. Solar Energy, 2005. 79(1): p. 78-85.
4. Oh, B.-Y., et al., Transparent conductive Al-doped ZnO films for liquid crystal displays. Journal of Applied Physics, 2006. 99(12): p. 124505.
5. Leterrier, Y., et al., Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 2004. 460(1-2): p. 156-166.
6. Hongsingthong, A., et al., ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express, 2010. 3(5): p. 051102.
7. Yoo, J., et al., High transmittance and low resistive ZnO: Al films for thin film solar cells. Thin Solid Films, 2005. 480: p. 213-217.
8. Howard, S., Ellingham Diagrams: Standard Gibbs Energies of Formation for Oxides. SD School of Mines and Technology, Rapid City, SD, 2006.
9. Ghilane, J., et al., Facile electrochemical characterization of core/shell nanoparticles. Ag core/Ag2O shell structures. Nano letters, 2007. 7(5): p. 1406-1412.
10. Bardos, R., et al., Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers. Applied Physics Letters, 2006. 88(5): p. 053504.
11. Li, B., D. Shaughnessy, and A. Mandelis, Measurement accuracy analysis of photocarrier radiometric determination of electronic transport parameters of silicon wafers. Journal of applied physics, 2005. 97(2): p. 023701.
12. Persans, P.D., et al., Photocarrier lifetime and transport in silicon supersaturated with sulfur. Applied Physics Letters, 2012. 101(11): p. 111105.
13. Lee, P.-M., et al., Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions. Applied Surface Science, 2018. 442: p. 398-402.
14. Barsan, N., D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to? Sensors and Actuators B: Chemical, 2007. 121(1): p. 18-35.
15. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95.
16. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature materials, 2010. 9(3): p. 205.
17. Tian, Y. and T. Tatsuma, Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO 2. Chemical Communications, 2004(16): p. 1810-1811.
18. Wang, F. and N.A. Melosh, Plasmonic energy collection through hot carrier extraction. Nano letters, 2011. 11(12): p. 5426-5430.
19. Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 2011. 10(12): p. 911.
20. Du, L., et al., Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 21-30.
21. Zhao, G., H. Kozuka, and T. Yoko, Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 1996. 277(1-2): p. 147-154.
22. Brown, A.M., et al., Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS nano, 2015. 10(1): p. 957-966.
23. Sonnichsen, C., et al., Drastic reduction of plasmon damping in gold nanorods. Physical review letters, 2002. 88(7): p. 077402.
24. White, T.P. and K.R. Catchpole, Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Applied physics letters, 2012. 101(7): p. 073905.
25. Berglund, C. and W. Spicer, Photoemission studies of copper and silver: experiment. Physical Review, 1964. 136(4A): p. A1044.
26. Inagaki, T., K. Kagami, and E. Arakawa, Photoacoustic observation of nonradiative decay of surface plasmons in silver. Physical Review B, 1981. 24(6): p. 3644.
27. Zhou, J., et al., Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 2009. 94(19): p. 191103.
28. Knight, M.W., et al., Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano letters, 2013. 13(4): p. 1687-1692.
29. Chang, Y.-J. and K.-H. Shih, Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. Journal of Applied Physics, 2016. 119(18): p. 183101.
30. Gadzuk, J.W., On the detection of chemically-induced hot electrons in surface processes: from X-ray edges to Schottky barriers. The Journal of Physical Chemistry B, 2002. 106(33): p. 8265-8270.
31. Boriskina, S.V., et al. Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold. in Infrared Remote Sensing and Instrumentation XXIII. 2015. International Society for Optics and Photonics.
32. Sun, X. and Y. Li, Colloidal carbon spheres and their core/shell structures with noble?metal nanoparticles. Angewandte Chemie International Edition, 2004. 43(5): p. 597-601.
33. Kerker, M., The optics of colloidal silver: something old and something new. Journal of Colloid and Interface Science, 1985. 105(2): p. 297-314.
34. Awazu, K., et al., A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008. 130(5): p. 1676-1680.
35. Gaskell, D.R. and D.E. Laughlin, Introduction to the Thermodynamics of Materials. 2017: CRC Press.
36. Thomson, G.W., The Antoine equation for vapor-pressure data. Chemical reviews, 1946. 38(1): p. 1-39.
37. Alcock, C., V. Itkin, and M. Horrigan, Vapour pressure equations for the metallic elements: 298–2500K. Canadian Metallurgical Quarterly, 1984. 23(3): p. 309-313.
38. Jendrzejczyk, D. and K. Fitzner, Thermodynamic properties of liquid silver–indium alloys determined from emf measurements. Thermochimica acta, 2005. 433(1-2): p. 66-71.
39. Moser, Z., et al., Studies of the Ag-In phase diagram and surface tension measurements. Journal of electronic Materials, 2001. 30(9): p. 1120-1128.
40. Galazka, Z., et al., Melt growth, characterization and properties of bulk In2O3 single crystals. Journal of Crystal Growth, 2013. 362: p. 349-352.
41. Li, C., et al., Diameter?controlled growth of single?crystalline In2O3 nanowires and their electronic properties. Advanced Materials, 2003. 15(2): p. 143-146.
42. Huo, Y., J. Wu, and C.C. Lee, Study of Anti-Tarnishing Mechanism in Ag-In Binary System by Using Semi-Quantum-Mechanical Approach. Journal of The Electrochemical Society, 2017. 164(7): p. C418-C427.
43. Masuda, Y., M. Kondo, and K. Koumoto, Site-selective deposition of In2O3 using a self-assembled monolayer. Crystal Growth and Design, 2008. 9(1): p. 555-561.
44. Leem, D.-S., et al., Formation mechanism of cerium oxide-doped indium oxide/Ag Ohmic contacts on p-type GaN. Applied physics letters, 2006. 89(26): p. 262115.
45. Nazarzadehmoafi, M., et al., Schottky contact by Ag on In2O3 (111) single crystals. Applied Physics Letters, 2014. 105(16): p. 162104.
46. Michaelson, H.B., The work function of the elements and its periodicity. Journal of applied physics, 1977. 48(11): p. 4729-4733.
47. Pan, C. and T. Ma, Work function of In2O3 film as determined from internal photoemission. Applied Physics Letters, 1980. 37(8): p. 714-716.
48. Zheng, W., et al., A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sensors and Actuators B: Chemical, 2009. 142(1): p. 61-65.
49. Neri, G., et al., In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sensors and Actuators B: Chemical, 2007. 127(2): p. 455-462.
50. Nishijima, Y., et al., Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. The Journal of Physical Chemistry Letters, 2010. 1(13): p. 2031-2036.
51. Kasap, S.O., Principles of electronic materials and devices. Vol. 2. 2006: McGraw-Hill New York.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2018-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明