參考文獻 |
1. Kim, J.K., et al., Light?extraction enhancement of GaInN light?emitting diodes by graded?refractive?index indium tin oxide anti?reflection contact. Advanced materials, 2008. 20(4): p. 801-804.
2. Braun, A., et al., Localized irradiation effects on tunnel diode transitions in multi-junction concentrator solar cells. Solar Energy Materials and Solar Cells, 2009. 93(9): p. 1692-1695.
3. Yamaguchi, M., et al., Multi-junction III–V solar cells: current status and future potential. Solar Energy, 2005. 79(1): p. 78-85.
4. Oh, B.-Y., et al., Transparent conductive Al-doped ZnO films for liquid crystal displays. Journal of Applied Physics, 2006. 99(12): p. 124505.
5. Leterrier, Y., et al., Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 2004. 460(1-2): p. 156-166.
6. Hongsingthong, A., et al., ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express, 2010. 3(5): p. 051102.
7. Yoo, J., et al., High transmittance and low resistive ZnO: Al films for thin film solar cells. Thin Solid Films, 2005. 480: p. 213-217.
8. Howard, S., Ellingham Diagrams: Standard Gibbs Energies of Formation for Oxides. SD School of Mines and Technology, Rapid City, SD, 2006.
9. Ghilane, J., et al., Facile electrochemical characterization of core/shell nanoparticles. Ag core/Ag2O shell structures. Nano letters, 2007. 7(5): p. 1406-1412.
10. Bardos, R., et al., Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers. Applied Physics Letters, 2006. 88(5): p. 053504.
11. Li, B., D. Shaughnessy, and A. Mandelis, Measurement accuracy analysis of photocarrier radiometric determination of electronic transport parameters of silicon wafers. Journal of applied physics, 2005. 97(2): p. 023701.
12. Persans, P.D., et al., Photocarrier lifetime and transport in silicon supersaturated with sulfur. Applied Physics Letters, 2012. 101(11): p. 111105.
13. Lee, P.-M., et al., Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions. Applied Surface Science, 2018. 442: p. 398-402.
14. Barsan, N., D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to? Sensors and Actuators B: Chemical, 2007. 121(1): p. 18-35.
15. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95.
16. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature materials, 2010. 9(3): p. 205.
17. Tian, Y. and T. Tatsuma, Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO 2. Chemical Communications, 2004(16): p. 1810-1811.
18. Wang, F. and N.A. Melosh, Plasmonic energy collection through hot carrier extraction. Nano letters, 2011. 11(12): p. 5426-5430.
19. Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 2011. 10(12): p. 911.
20. Du, L., et al., Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 21-30.
21. Zhao, G., H. Kozuka, and T. Yoko, Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 1996. 277(1-2): p. 147-154.
22. Brown, A.M., et al., Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS nano, 2015. 10(1): p. 957-966.
23. Sonnichsen, C., et al., Drastic reduction of plasmon damping in gold nanorods. Physical review letters, 2002. 88(7): p. 077402.
24. White, T.P. and K.R. Catchpole, Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Applied physics letters, 2012. 101(7): p. 073905.
25. Berglund, C. and W. Spicer, Photoemission studies of copper and silver: experiment. Physical Review, 1964. 136(4A): p. A1044.
26. Inagaki, T., K. Kagami, and E. Arakawa, Photoacoustic observation of nonradiative decay of surface plasmons in silver. Physical Review B, 1981. 24(6): p. 3644.
27. Zhou, J., et al., Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 2009. 94(19): p. 191103.
28. Knight, M.W., et al., Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano letters, 2013. 13(4): p. 1687-1692.
29. Chang, Y.-J. and K.-H. Shih, Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. Journal of Applied Physics, 2016. 119(18): p. 183101.
30. Gadzuk, J.W., On the detection of chemically-induced hot electrons in surface processes: from X-ray edges to Schottky barriers. The Journal of Physical Chemistry B, 2002. 106(33): p. 8265-8270.
31. Boriskina, S.V., et al. Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold. in Infrared Remote Sensing and Instrumentation XXIII. 2015. International Society for Optics and Photonics.
32. Sun, X. and Y. Li, Colloidal carbon spheres and their core/shell structures with noble?metal nanoparticles. Angewandte Chemie International Edition, 2004. 43(5): p. 597-601.
33. Kerker, M., The optics of colloidal silver: something old and something new. Journal of Colloid and Interface Science, 1985. 105(2): p. 297-314.
34. Awazu, K., et al., A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008. 130(5): p. 1676-1680.
35. Gaskell, D.R. and D.E. Laughlin, Introduction to the Thermodynamics of Materials. 2017: CRC Press.
36. Thomson, G.W., The Antoine equation for vapor-pressure data. Chemical reviews, 1946. 38(1): p. 1-39.
37. Alcock, C., V. Itkin, and M. Horrigan, Vapour pressure equations for the metallic elements: 298–2500K. Canadian Metallurgical Quarterly, 1984. 23(3): p. 309-313.
38. Jendrzejczyk, D. and K. Fitzner, Thermodynamic properties of liquid silver–indium alloys determined from emf measurements. Thermochimica acta, 2005. 433(1-2): p. 66-71.
39. Moser, Z., et al., Studies of the Ag-In phase diagram and surface tension measurements. Journal of electronic Materials, 2001. 30(9): p. 1120-1128.
40. Galazka, Z., et al., Melt growth, characterization and properties of bulk In2O3 single crystals. Journal of Crystal Growth, 2013. 362: p. 349-352.
41. Li, C., et al., Diameter?controlled growth of single?crystalline In2O3 nanowires and their electronic properties. Advanced Materials, 2003. 15(2): p. 143-146.
42. Huo, Y., J. Wu, and C.C. Lee, Study of Anti-Tarnishing Mechanism in Ag-In Binary System by Using Semi-Quantum-Mechanical Approach. Journal of The Electrochemical Society, 2017. 164(7): p. C418-C427.
43. Masuda, Y., M. Kondo, and K. Koumoto, Site-selective deposition of In2O3 using a self-assembled monolayer. Crystal Growth and Design, 2008. 9(1): p. 555-561.
44. Leem, D.-S., et al., Formation mechanism of cerium oxide-doped indium oxide/Ag Ohmic contacts on p-type GaN. Applied physics letters, 2006. 89(26): p. 262115.
45. Nazarzadehmoafi, M., et al., Schottky contact by Ag on In2O3 (111) single crystals. Applied Physics Letters, 2014. 105(16): p. 162104.
46. Michaelson, H.B., The work function of the elements and its periodicity. Journal of applied physics, 1977. 48(11): p. 4729-4733.
47. Pan, C. and T. Ma, Work function of In2O3 film as determined from internal photoemission. Applied Physics Letters, 1980. 37(8): p. 714-716.
48. Zheng, W., et al., A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sensors and Actuators B: Chemical, 2009. 142(1): p. 61-65.
49. Neri, G., et al., In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sensors and Actuators B: Chemical, 2007. 127(2): p. 455-462.
50. Nishijima, Y., et al., Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. The Journal of Physical Chemistry Letters, 2010. 1(13): p. 2031-2036.
51. Kasap, S.O., Principles of electronic materials and devices. Vol. 2. 2006: McGraw-Hill New York. |