博碩士論文 105223005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.225.92.173
姓名 陳怡均(Yi-Jun Chan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以全面二維氣相層析飛行時間質譜儀分析懸浮微粒之有機成分
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 懸浮微粒 (Particulate Matter)是重要的空氣汙染指標物,因其容易吸附空氣中其他污染物,並作為光化反應的界面形成二次有機污染物,所以具有種類多樣且含量不一有機成分,若能得知懸浮微粒的化學組成勢必對於了解懸浮微粒的排放來源及形成機制有所幫助,本研究之目的即是透過新穎的分析技術對懸浮微粒的組成進行定性分析,期望藉由定性結果推論出成分的排放來源以及可證明光化反應機制的關鍵化合物。
以往使用一維GC-MS分析懸浮微粒時,容易發生大量層析峰共析的現象,影響質譜定性成效,本研究利用具高解析能力之GC×GC-TOF MS系統有效地分離高複雜度的懸浮微粒組分。其中GC×GC的核心使用了市售的氣流型調制器,有別於常規冷凍型調制器,在無需消耗大量冷劑的情況下,透過氣流壓力的調整與流向的切換達到與冷凍型調制器相仿的調制、聚焦效果,可以應用於野外線上監測。而本研究使用的TOF MS作為定性偵測器除具有高資料擷取速率 (50 Hz以上)以完美呈現GC×GC圖譜外,還可耐受約5 mL/min的載流流速而不致破除真空,提升了進入TOF MS端的分析樣本分流量,增加層析峰感度。
本研究使用HPLC級溶劑,降低溶劑雜質可能產生的干擾,以超音波震盪輔助溶劑萃取收集在石英濾紙上的懸浮微粒,透過吹氮獲得濃縮後的萃取溶液,以液態注射方式注入GC×GC-TOF MS進行定性分析。萃取懸浮微粒中有機成分的方經最佳化測試後,決定使用1/2張面積為8” × 10”之高通量採樣濾紙為萃取樣本,以甲苯/丙酮等體積混合溶劑進行萃取。為確認分析結果的有機成分確實源自懸浮微粒,萃取懸浮微粒採樣濾紙的過程中,予以相同條件同時萃取實驗室空白濾紙,將其分析結果當作背景值排除污染及干擾,作為實驗方法檢驗,避免溶劑雜質及分析系統殘留污染導致誤判。
此外,透過添加直鏈烷烴標準品可見分析物是懸浮微粒中沸點範圍介於十二烷至三十烷之間的半揮發性有機成分(Semi-Volatile Organic Compounds,SVOCs)。無法分析低沸點化合物的主要原因是使用甲苯作為萃取溶劑,因其沸點高,在濃縮過程中為移除甲苯,勢必連同沸點較低的有機物一併移除。
分析高通量採樣之PM10及PM2.5的GC×GC-TOF MS分析結果中,排除烷類化合物後初步定性的成分數量分別有45種和56種,且多為醇、醛、酮和酯類等含氧化合物,又以直接排放、未經光化反應的一級有機氣膠 (primary organic aerosol,POA)為主,其中也包含較為特殊的成分如;塑化劑及有機磷阻燃劑等人造化合物,若能作為具有代表性的排放標記物 (Marker),就能藉此回溯該污染物的排放源,並進一步實施排放管制以期降低此類人造化合物對環境的影響。
摘要(英) The presence of organic compounds on the particular matter (PM) or aerosols can be arisen from the absorption of gaseous organic compounds on the existing aerosols, or from organic precursors to form secondary organic aerosols (SOA) through photochemistry. As a result, knowing the chemical composition of aerosols can shed light to the understanding of particle formation and source characteristics. The objective of this study is to characterize organic constituents on aerosols relevant to their emission sources and the key compounds revealing the evolution of aerosols with the use of a novel analytical technique.
The conventional GC-MS technique has been used to analyze the organic composition of aerosols. However, the high organic complexity of aerosol samples often renders GC-MS technique unsatisfactory in terms of compound separation and identification. As a result, time-of-flight mass spectrometry (TOF-MS) coupled with comprehensive two dimensional GC (GC×GC-TOF) was preferred. A flow type of modulator instead of a thermal type was used in GC×GC as a prelude to field applications without the need of cryogen. The high data sampling rate of 50 Hz for the TOF MS is pivotal to produce very detailed and reproducible GC×GC results. The tolerance of high carrier gas flow rates of up to 5 mL/min played the key role to achieve high sample throughput and thus better sensitivity.
We used ultrasound assisted extraction to extract PM samples collected on quartz filter papers. The solution extracted was then purged by nitrogen to reduce volume before GC injection. Various organic solvents were tested and the combination of acetone and toluene was found to be most suitable to achieve optimal extraction. HPLC grade solvents were used to minimize background interference. Both solvent and filter blanks were made to determine the background contribution to the sample results.
The GC×GC results have been obtained by analyzing both PM10 and PM2.5 samples collected by high-volume samplers. By spiking with a known amount of long-chain alkanes as the markers of molecular size, we found that the majority of the organic analytes were in the range of 12 - 30 carbon numbers falling in the category of semi-volatile organic compounds (SVOCs). If excluding alkanes, 45 and 56 compounds of alcohol, aldehyde, ketone, and ester varieties were able to be tentatively identified for the PM10 and PM2.5 samples, respectively, which are mostly primary organic aerosols (POA). Intriguingly, trace amounts of plasticizers and phosphorus flame retardants were also found. Compounds such as these are unique to the specific sources, called markers, demonstrating the wide spread of these hazardous compounds in the environment.
關鍵字(中) ★ 全面二維氣相層析
★ 飛行時間質譜儀
★ 懸浮微粒
★ 氣流型調制器
★ 半揮發性有機成分
★ 二次有機氣膠
關鍵字(英) ★ GC×GC
★ TOF MS
★ Particulate Matters
★ Flow modulator
★ SVOCs
★ SOA
論文目次 摘要 i
Abstract v
謝誌 ix
目錄 xi
圖目錄 xv
表目錄 xxi
第一章 前言 1
1-1 研究動機 1
1-2 懸浮微粒 (Particulate Matter,PM) 2
1-3 懸浮微粒組成分析方法 4
1-3-1 總有機碳分析儀 (Total Organic Carbon Analyzer) 6
1-3-2 氣膠質譜儀 (Aerosol Mass Spectrometer,AMS) 8
1-3-3 熱脫附氣膠氣相層析儀 (Thermal Desorption Aerosol Gas Chromatography,TAG) 10
1-3-4 一維氣相層析質譜儀 12
1-3-5 全面二維氣相層析質譜儀 15
第二章 全面二維氣相層析 19
2-1 氣相層析的演進 19
2-2 GC×GC系統架構 22
2-2-1 進樣系統 23
2-2-2 管柱組合 24
2-2-3 調制器 (Modulator) 27
2-2-4 偵測器 33
第三章 實驗設備與原理 41
3-1 濾紙採集 41
3-2 濾紙樣本前處理 42
3-2-1 濾紙樣本 45
3-2-2 萃取濃縮 45
3-2-3 標準品 47
3-3 萃取溶劑最佳化實驗設計 48
3-4 實驗儀器與原理 50
3-4-1 分析儀器系統 51
3-4-2 分析系統參數 58
3-4-3 GC×GC圖譜處理 60
第四章 實驗結果與討論 63
4-1 濾紙樣本選擇 63
4-2 萃取溶劑最佳化 66
4-3 PM10濾紙樣本——生質燃燒事件(鹿林山) 74
4-4 PM2.5濾紙樣本——台中科技園區周界 83
4-5 PM10與PM2.5濾紙分析結果比較 90
第五章 結論 93
參考文獻 95
參考文獻 1. Jacobson, M. C.; Hansson, H. C.; Noone, K. J.; Charlson, R. J., Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics 2000, 38 (2), 267-294.
2. Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, T. F.; Monod, A.; Prevot, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J., The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 2009, 9 (14), 5155-5236.
3. Myhre, G.; Shindell, D.; Breon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; Nakajima, T.; A. Robock; Stephens, G.; Takemura, T.; Zhang, H., Anthropogenic and Natural Radiative Forcing. In Intergovernmental Panel on Climate, Change, 2014; pp 659-740.
4. Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F.; Zotter, P.; Wolf, R.; Pieber, S. M.; Bruns, E. A.; Crippa, M.; Ciarelli, G.; Piazzalunga, A.; Schwikowski, M.; Abbaszade, G.; Schnelle-Kreis, J.; Zimmermann, R.; An, Z.; Szidat, S.; Baltensperger, U.; Haddad, I. E.; Prevot, A. S. H., High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218.
5. Nguyen, D. L.; Kawamura, K.; Ono, K.; Ram, S. S.; Engling, G.; Lee, C.-T.; Chi, K. H.; Sun, S.-A.; Lin, N.-H.; Chang, S.-C.; Chuang, M.-T.; Hsiao, T.-C.; Sheu, G.-R.; Ou Yang, C.-F., Comprehensive PM2.5 Organic Molecular Composition and Stable Carbon Isotope Ratios at Sonla, Vietnam: Fingerprint of Biomass Burning Components. Aerosol and Air Quality Research 2016, 16 (11), 2618-2634.
6. 行政院環境保護署環境檢驗所, NIEA A205.11C: 空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法. 2012.
7. 行政院環境保護署環境檢驗所, NIEA A208.12C: 空氣中懸浮微粒(PM10)之檢測方法-手動法. 2016.
8. Grosjean, D.; Friedlander, S. K., Gas-Particle Distribution Factors for Organic and Other Pollutants in the Los Angeles Atmosphere. Journal of the Air Pollution Control Association 1975, 25 (10), 1038-1044.
9. Jimenez, J. L., Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research 2003, 108 (D7).
10. Jayne, J. T.; Leard, D. C.; Zhang, X.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R., Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Science and Technology 2000, 33 (1-2), 49-70.
11. Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A.; Delia, A.; Williams, L. R.; Trimborn, A. M.; Northway, M. J.; DeCarlo, P. F.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 2007, 26 (2), 185-222.
12. Williams, B. J.; Goldstein, A. H.; Kreisberg, N. M.; Hering, S. V., An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols:Thermal DesorptionAerosolGC/MS-FID (TAG). Aerosol Science and Technology 2006, 40 (8), 627-638.
13. Goldstein, A. H.; Worton, D. R.; Williams, B. J.; Hering, S. V.; Kreisberg, N. M.; Panic, O.; Gorecki, T., Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols. Journal of Chromatography A 2008, 1186 (1-2), 340-7.
14. Rogge, W. F.; Hildemann, L. M.; Mazurek, M. A.; Cass, G. R.; Simoneit, B. R. T., Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science & Technology 1991, 25 (6), 1112-1125.
15. Rogge, W. F.; Hildemann, L. M.; Mazurek, M. A.; Cass, G. R.; Simoneit, B. R. T., Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science & Technology 2002, 27 (4), 636-651.
16. Rogge, W. F.; Hildemann, L. M.; Mazurek, M. A.; Cass, G. R.; Simoneit, B. R. T., Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology 2002, 27 (9), 1892-1904.
17. Simoneit, B. R. T.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W. F.; Cass, G. R., Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 1999, 33 (2), 173-182.
18. Fang, M.; Zheng, M.; Wang, F.; To, K.-L.; Jaafar, A.-B.; Tong, S.-L., The solvent-extractable organic compounds in the Indonesia biomass burning aerosols characterization studies. Atmospheric Environment 1999, 33 (5), 783-795.
19. Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P., Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmospheric Chemistry and Physics 2004, 4 (5), 1279-1290.
20. Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.; Adahchour, M.; Hyotylainen, T., Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest. J Chromatogr A 2006, 1125 (2), 234-43.
21. Alam, M. S.; West, C. E.; Scarlett, A. G.; Rowland, S. J.; Harrison, R. M., Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter. Atmospheric Environment 2013, 65, 101-111.
22. Marriott, P. J.; Haglund, P.; Ong, R. C. Y., A review of environmental toxicant analysis by using multidimensional gas chromatography and comprehensive GC. Clinica Chimica Acta 2003, 328 (1-2), 1-19.
23. Berger, T. A., Separation of a gasoline on an open tubular column with 1.3 million effective plates. Chromatographia 1996, 42 (1-2), 63-71.
24. Hinshaw, J. V., Split-Vent Traps: GC′s Dirty Secret. LCGC North America 2015, 33 (10), 758-763.
25. Adahchour, M.; Beens, J.; Vreuls, R. J. J.; Batenburg, A. M.; Brinkman, U. A. T., Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: application to food analysis. Journal of Chromatography A 2004, 1054 (1-2), 47-55.
26. Harynuk, J.; Gorecki, T., Comprehensive two-dimensional gas chromatography in stop-flow mode. Journal of Separation Science 2004, 27 (5-6), 431-441.
27. Focant, J.-F.; Sjodin, A.; Patterson, D. G., Qualitative evaluation of thermal desorption-programmable temperature vaporization-comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the analysis of selected halogenated contaminants. Journal of Chromatography A 2003, 1019 (1-2), 143-156.
28. Seeley, J. V.; Micyus, N. J.; Bandurski, S. V.; Seeley, S. K.; McCurry, J. D., Microfluidic deans switch for comprehensive two-dimensional gas chromatography. Anal Chem 2007, 79 (5), 1840-7.
29. Firor, R. L., Characterization of a New Reversed Flow Modulator for GCXGC. 2014.
30. Firor, R. L., Examining Comprehensive Flow-Modulated Two-Dimensional Gas Chromatography. Agilent Measurement Journal 2010.
31. von Muhlen, C.; Khummueng, W.; Alcaraz Zini, C.; Bastos Caramao, E.; Marriott, P. J., Detector technologies for comprehensive two-dimensional gas chromatography. Journal of Separation Science 2006, 29 (12), 1909-1921.
32. 周裕傑, 全面二維氣相層析應用於空氣與生活複雜樣品之分析. 國立中央大學,碩士論文,2012.
33. Muscalu, A. M.; Reiner, E. J.; Liss, S. N.; Chen, T.; Ladwig, G.; Morse, D., A routine accredited method for the analysis of polychlorinated biphenyls, organochlorine pesticides, chlorobenzenes and screening of other halogenated organics in soil, sediment and sludge by GCxGC-mECD. Anal Bioanal Chem 2011, 401 (8), 2403-13.
34. 台灣質譜學會, 質譜分析技術原理與應用. 2015.
35. Adahchour, M.; Brandt, M.; Baier, H.-U.; Vreuls, R. J. J.; Batenburg, A. M.; Brinkman, U. A. T., Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications. Journal of Chromatography A 2005, 1067 (1-2), 245-254.
36. 許菀芸, 全面二維氣相層析(GC×GC-FID/qMS)建置與測試. 國立中央大學,碩士論文,2014.
37. Ho, S. S. H.; Yu, J. Z., In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. Journal of Chromatography A 2004, 1059 (1-2), 121-129.
38. Grosjean, D., Solvent extraction and organic carbon determination in atmospheric particulate matter. Organic extraction-organic carbon analyzer (OE-OCA) technique. Analytical Chemistry 2002, 47 (6), 797-805.
39. 王珮霞, 全面二維氣相層析技術分析汽車尾氣中揮發性有機化合物成分. 國立中央大學,碩士論文,2016.
40. Dubois, L. M.; Perrault, K. A.; Stefanuto, P. H.; Koschinski, S.; Edwards, M.; McGregor, L.; Focant, J. F., Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood. Journal of Chromatography A 2017, 1501, 117-127.
41. Dalluge, J.; Beens, J.; Brinkman, U. A. T., Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. Journal of Chromatography A 2003, 1000 (1-2), 69-108.
42. Carvalho, A.; Pio, C.; Santos, C., Water-soluble hydroxylated organic compounds in German and Finnish aerosols. Atmospheric Environment 2003, 37 (13), 1775-1783.
43. Kendall, M.; Hamilton, R. S.; Watt, J.; Williams, I. D., Characterisation of selected speciated organic compounds associated with particulate matter in London. Atmospheric Environment 2001, 35 (14), 2483-2495.
44. Wang, G.; Kawamura, K.; Zhao, X.; Li, Q.; Dai, Z.; Niu, H., Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmospheric Environment 2007, 41 (2), 407-416.
45. Bi, X.; Simoneit, B. R. T.; Wang, Z.; Wang, X.; Sheng, G.; Fu, J., The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. Atmospheric Environment 2010, 44 (35), 4440-4445.
46. He, J.; Fan, S.; Meng, Q.; Sun, Y.; Zhang, J.; Zu, F., Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmospheric Environment 2014, 89, 207-215.
47. Ge, X.; Wexler, A. S.; Clegg, S. L., Atmospheric amines – Part I. A review. Atmospheric Environment 2011, 45 (3), 524-546.
48. Yang, F.-X.; Ding, J.-J.; Huang, W.; Xie, W.; Liu, W.-P., Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter. Environmental Science & Technology 2014, 48 (1), 63-70.
49. Barsanti, K. C.; Luo, W.; Isabelle, L. M.; Pankow, J. F.; Peyton, D. H., Tobacco smoke particulate matter chemistry by NMR. Magn Reson Chem 2007, 45 (2), 167-70.
50. Simoneit, B. R. T.; Elias, V. O., Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry 2000, 69 (3-4), 301-312.
51. Simoneit, B. R. T.; Rogge, W. F.; Mazurek, M. A.; Standley, L. J.; Hildemann, L. M.; Cass, G. R., Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environmental Science & Technology 2002, 27 (12), 2533-2541.
52. Hu, D.; Tolocka, M.; Li, Q.; Kamens, R. M., A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment 2007, 41 (31), 6478-6496.
53. Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Kroll, J. H.; Kwan, A. J.; McCabe, D. C.; Wennberg, P. O.; Sorooshian, A.; Murphy, S. M.; Dalleska, N. F.; Flagan, R. C.; Seinfeld, J. H., Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics 2007, 7 (19), 5159-5174.
54. Barsanti, K. C.; Pankow, J. F., Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids. Atmospheric Environment 2006, 40 (34), 6676-6686.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明