參考文獻 |
1. Lysaght, M.J. and J. Crager, Origins. Tissue Eng Part A, 2009. 15(7): p. 1449-50.
2. Kaiser, L.R., The future of multihospital systems. Top Health Care Financ, 1992. 18(4): p. 32-45.
3. Bajaj, P., et al., 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng, 2014. 16: p. 247-76.
4. Mao, A.S. and D.J. Mooney, Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences, 2015. 112(47): p. 14452-14459.
5. Falanga, V. and M. Sabolinski, A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen, 1999. 7(4): p. 201-7.
6. Riazi, A.M., S.Y. Kwon, and W.L. Stanford, Stem cell sources for regenerative medicine, in Stem Cells in Regenerative Medicine. 2009, Springer. p. 55-90.
7. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet, 2012. 379(9817): p. 713-720.
8. Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Molecular Therapy, 2007. 15(5): p. 850-866.
9. Trounson, A. and C. McDonald, Stem cell therapies in clinical trials: progress and challenges. Cell stem cell, 2015. 17(1): p. 11-22.
10. Higuchi, A., et al., Stem Cell Therapies for Reversing Vision Loss. Trends in biotechnology, 2017.
11. Song, W.K., et al., Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports, 2015. 4(5): p. 860-72.
12. Mandai, M., et al., Autologous induced stem-cell–derived retinal cells for macular degeneration. New England Journal of Medicine, 2017. 376(11): p. 1038-1046.
13. Chen, S.-l., et al., Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 2004. 94(1): p. 92-95.
14. Kang, H.-J., et al., Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. The Lancet, 2004. 363(9411): p. 751-756.
15. Wollert, K.C., et al., Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. The Lancet, 2004. 364(9429): p. 141-148.
16. Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. The Lancet, 2006. 367(9505): p. 113-121.
17. Voltarelli, J.C., et al., Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Jama, 2007. 297(14): p. 1568-1576.
18. Yoon, S.H., et al., Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage?colony stimulating factor: phase I/II clinical trial. Stem cells, 2007. 25(8): p. 2066-2073.
19. Haggstrom, M., Medical gallery of Mikael Haggstrom 2014. Wikiversity Journal of Medicine, 2014. 1(2).
20. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Journal of Stem Cell Research & Therapy, 2011. 01(03).
21. Forostyak, O., G. Dayanithi, and S. Forostyak, CNS regenerative medicine and stem cells. Opera Medica et Physiologica, 2016(1).
22. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147.
23. Yabut, O. and H.S. Bernstein, The promise of human embryonic stem cells in aging-associated diseases. Aging (Albany NY), 2011. 3(5): p. 494.
24. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
25. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872.
26. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
27. Narsinh, K.H., J. Plews, and J.C. Wu, Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Molecular Therapy, 2011. 19(4): p. 635-638.
28. Kropp, C., D. Massai, and R. Zweigerdt, Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry, 2017. 59: p. 244-254.
29. Jamshaid, T., et al., Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends in Analytical Chemistry, 2016. 79: p. 344-362.
30. Bilousova, G. and D.R. Roop, Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations. Cold Spring Harbor Perspectives in Medicine, 2014. 4(11): p. 15.
31. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
32. Crook, J.M., et al., The generation of six clinical-grade human embryonic stem cell lines. Cell stem cell, 2007. 1(5): p. 490-494.
33. Rajala, K., et al., A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PloS one, 2010. 5(4): p. e10246.
34. Hwang, S.-T., et al., The expansion of human ES and iPS cells on porous membranes and proliferating human adipose-derived feeder cells. Biomaterials, 2010. 31(31): p. 8012-8021.
35. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-1890.
36. Wang, H., X. Luo, and J. Leighton, Extracellular matrix and integrins in embryonic stem cell differentiation. Biochemistry insights, 2015. 8: p. BCI. S30377.
37. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chemical reviews, 2012. 112(8): p. 4507-4540.
38. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
39. Fu, X., et al., Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Engineering Part C, 2011. 17(9): p. 927-937.
40. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
41. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 606-610.
42. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7: p. 45146.
43. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. J Biotechnol, 2010. 146(3): p. 143-6.
44. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature methods, 2010. 7(12): p. 989.
45. Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem cells and development, 2011. 21(11): p. 2036-2048.
46. Nishishita, N., et al., Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PloS one, 2012. 7(6): p. e38389.
47. Banks, J.M., et al., The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials, 2014. 35(32): p. 8951-8959.
48. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
49. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
50. Higuchi, A., et al., Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. Journal of Materials Chemistry B, 2015. 3(41): p. 8032-8058.
51. Huebsch, N., et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature materials, 2010. 9(6): p. 518.
52. Leipzig, N.D. and M.S. Shoichet, The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 2009. 30(36): p. 6867-6878.
53. Wang, L. and J.P. Stegemann, Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials, 2010. 31(14): p. 3976-3985.
54. Guvendiren, M. and J.A. Burdick, Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics. Nature communications, 2012. 3: p. 792.
55. Ghajar, C.M., et al., Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue engineering, 2006. 12(10): p. 2875-2888.
56. Wang, L.-S., et al., Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 2010. 31(6): p. 1148-1157.
57. Zoldan, J., et al., The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 2011. 32(36): p. 9612-9621.
58. Bai, S., et al., Silk scaffolds with tunable mechanical capability for cell differentiation. Acta biomaterialia, 2015. 20: p. 22-31.
59. Murphy, C.M., et al., Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the mechanical behavior of biomedical materials, 2012. 11: p. 53-62.
60. Muduli, S., et al., Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. Journal of Polymer Engineering, 2017. 37(7): p. 647-660.
61. Ye, K., et al., Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano letters, 2015. 15(7): p. 4720-4729.
62. Wen, J.H., et al., Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature materials, 2014. 13(10): p. 979.
63. Goetzke, R., et al., Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels. Biomaterials, 2018. 156: p. 147-158.
64. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Scientific reports, 2015. 5: p. 18136.
65. Li, J., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. FA132-FA142.
66. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature materials, 2010. 9(9): p. 768.
67. Higuchi, A., et al., Growth of L929 cells on polymeric films prepared by Langmuir–Blodgett and casting methods. Journal of Biomaterials Science, Polymer Edition, 2000. 11(2): p. 149-168.
68. Ullmann, U., et al., Epithelial–mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Molecular human reproduction, 2006. 13(1): p. 21-32.
69. Dedhar, S., Cell–substrate interactions and signaling through ILK. Current opinion in cell biology, 2000. 12(2): p. 250-256.
70. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC developmental biology, 2010. 10(1): p. 60.
71. Pashuck, E.T. and M.M. Stevens, Designing regenerative biomaterial therapies for the clinic. Science translational medicine, 2012. 4(160): p. 160sr4-160sr4.
72. Armstrong, L., et al., The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human molecular genetics, 2006. 15(11): p. 1894-1913.
73. Llewelyn, C., et al., Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. The Lancet, 2004. 363(9407): p. 417-421.
74. Ludwig, T. and J. A Thomson, Defined, feeder?independent medium for human embryonic stem cell culture. Current protocols in stem cell biology, 2007: p. 1C. 2.1-1C. 2.16.
75. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nature biotechnology, 2006. 24(2): p. 185.
76. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424.
77. Furue, M.K., et al., Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proceedings of the National Academy of Sciences, 2008. 105(36): p. 13409-13414.
78. Li, Y., et al., Expansion of human embryonic stem cells in defined serum?free medium devoid of animal?derived products. Biotechnology and bioengineering, 2005. 91(6): p. 688-698.
79. Desai, N., P. Rambhia, and A. Gishto, Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology, 2015. 13(1): p. 9.
80. Levenstein, M.E., et al., Basic fibroblast growth factor support of human embryonic stem cell self?renewal. Stem cells, 2006. 24(3): p. 568-574.
81. Vallier, L., M. Alexander, and R.A. Pedersen, Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of cell science, 2005. 118(19): p. 4495-4509.
82. James, D., et al., TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005. 132(6): p. 1273-1282.
83. Vallier, L., et al., Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development, 2009. 136(8): p. 1339-1349.
84. Vallier, L., D. Reynolds, and R.A. Pedersen, Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental biology, 2004. 275(2): p. 403-421.
85. Pellegrini, L., et al., Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature, 2000. 407(6807): p. 1029.
86. Roghani, M., et al., Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. Journal of Biological Chemistry, 1994. 269(6): p. 3976-3984.
87. Pantoliano, M.W., et al., Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry, 1994. 33(34): p. 10229-10248.
88. Pauklin, S. and L. Vallier, Activin/Nodal signalling in stem cells. Development, 2015. 142(4): p. 607-619.
89. Sussman, E.M., M.B. Clarke, and V.P. Shastri, Single-step process to produce surface-functionalized polymeric nanoparticles. Langmuir, 2007. 23(24): p. 12275-12279.
90. Gospodarowicz, D., et al., Structural characterization and biological functions of fibroblast growth factor. Endocrine reviews, 1987. 8(2): p. 95-114.
91. Geiger, M., R. Li, and W. Friess, Collagen sponges for bone regeneration with rhBMP-2. Advanced drug delivery reviews, 2003. 55(12): p. 1613-1629.
92. Santo, V.t.E.r., et al., Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules, 2009. 10(6): p. 1392-1401.
93. Park, H., et al., Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 2007. 28(21): p. 3217-3227.
94. Kuo, Y.-C. and M.-J. Huang, Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly (ε-caprolactone)-poly (β-hydroxybutyrate) scaffolds. Biomaterials, 2012. 33(23): p. 5672-5682.
95. Ma, F., et al., Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta biomaterialia, 2017. 50: p. 188-197.
96. Herland, A., et al., Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation. Angewandte Chemie-International Edition, 2011. 50(52): p. 12529-12533.
97. Braghirolli, D.I., et al., Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomedical Materials, 2017. 12(2): p. 16.
98. Benoit, D.S. and K.S. Anseth, Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta biomaterialia, 2005. 1(4): p. 461-470.
99. Ayerst, B.I., et al., Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Engineering Part A, 2017. 23(7-8): p. 275-292.
100. Wang, Z.G., et al., Fibroblast Growth Factor-1 Released from a Heparin Coacervate Improves Cardiac Function in a Mouse Myocardial Infarction Model. Acs Biomaterials Science & Engineering, 2017. 3(9): p. 1988-1999.
101. Steffens, G., et al., Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue engineering, 2004. 10(9-10): p. 1502-1509.
102. Yoon, J.J., et al., Heparin?immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. Journal of Biomedical Materials Research Part A, 2006. 79(4): p. 934-942.
103. Smith Jr, R.J., et al., Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials, 2015. 51: p. 303-312.
104. Landesberg, R., M. Roy, and R.S. Glickman, Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. Journal of Oral and Maxillofacial Surgery, 2000. 58(3): p. 297-300.
105. Eppley, B.L., J.E. Woodell, and J. Higgins, Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plastic and reconstructive surgery, 2004. 114(6): p. 1502-1508.
106. Bredehoft, M., W. Schanzer, and M. Thevis, Quantification of human insulin?like growth factor?1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008. 22(4): p. 477-485.
107. ?tefkova, K., J. Prochazkova, and J. Pachernik, Alkaline phosphatase in stem cells. Stem cells international, 2015. 2015.
108. O′Connor, M.D., et al., Alkaline Phosphatase?Positive Colony Formation Is a Sensitive, Specific, and Quantitative Indicator of Undifferentiated Human Embryonic Stem Cells. Stem cells, 2008. 26(5): p. 1109-1116.
109. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature cell biology, 2007. 9(6): p. 625.
110. Xu, N., et al., MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009. 137(4): p. 647-658.
111. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular medicine, 2000. 6(2): p. 88.
112. Kurosawa, H., Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of bioscience and bioengineering, 2007. 103(5): p. 389-398.
113. Sheridan, S.D., V. Surampudi, and R.R. Rao, Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem cells international, 2012. 2012.
114. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature biotechnology, 2000. 18(4): p. 399.
115. Fishbein, I., et al., Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction. Biomaterials, 2013. 34(28): p. 6938-6948.
116. Finley, M.J., et al., Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials, 2012. 33(24): p. 5803-5811.
117. Movassaghian, S., et al., Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles. Molecular pharmaceutics, 2016. 13(8): p. 2605-2621.
118. Boucher, C., et al., Human corneal epithelial cell response to epidermal growth factor tethered via coiled-coil interactions. Biomaterials, 2010. 31(27): p. 7021-7031.
119. 李孟蓓, 人類胚胎幹細胞在無滋養層及無異種條件的培養下於帶有生長因子的表面進行培養; Human Embryonic Stem Cells Culture on Growth Factor-immobilized Surface under Feeder-free and Xeno-free Conditions. 2017, 國立中央大學. |