博碩士論文 105223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.129.42.71
姓名 陳柏宇(Bo-Yu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用鐵鹽與過氧化氫在混合溶劑中降解玉米桿之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一種類芬頓預處理試劑,利用低濃度氯化鐵和過氧化氫在混合溶劑下,對玉米桿進行預處理。預處理後溶液中可得到可溶性單醣與低聚物可溶性糖類,預處理的芬頓試劑以及有機溶劑對環境影響較小,預處理條件是在溫和的條件下進行。另外試劑中的金屬鹽可以用四氧化三鐵代替氯化鐵,四氧化三鐵具有磁性可以利用強力磁鐵回收預處理後的四氧化三鐵,減少金屬鹽類含量。
摘要(英) A Fenton-like pretreatment reagent be developed that pretreated the cornstalk with a low concentration of FeCl3 and H2O2 in a mixed solvent system. Soluble monosaccharides and oligomer were obtained in the solution after pretreatment, and the pretreated reagent and organic solvent have low effect to the environment. In addition, the metal salt (FeCl3) in reagent can be replaced by Fe3O4. Fe3O4 has magnetic properties. The pretreated Fe3O4 can be recovered by a powerful magnet to reduce the metal salt content.
關鍵字(中) ★ 鐵鹽
★ 過氧化氫
★ 玉米桿
關鍵字(英)
論文目次 摘要 I
謝誌 III
目錄 IV
圖目錄 VII
表目錄 VIII
附錄 IX
第一章 緒論 1
1-1 前言 1
1-2 木質纖維素 3
1-2-1木質纖維素組成與作用 3
1-2-2 纖維素結構 4
1-2-4半纖維素結構 6
1-2-5 木質素結構 6
1-3 木質纖維素預處理 7
1-3-1 物理預處理 9
1-3-2化學預處理 9
1-3-3纖維素水解?水解 13
1-4 木質纖維素來源的選擇 14
1-5 研究方向 18
第二章 實驗 19
2-1實驗藥品 19
2-1-1溶劑 19
2-1-2藥品 19
2-1-3實驗氣體 20
2-2 實驗儀器 20
2-2-1手套箱 (Glove box) 20
2-2-2 高效液相色譜儀(HPLC) 20
2-2-3 UV-Visible Spectrophotometer 20
2-2-3 Thermogravimetric Analyzer 21
2-3 實驗步驟 22
2-3-1玉米桿材料準備 22
2-3-2 玉米桿組成分析 22
2-3-3 類芬頓預處理試劑製備 22
2-3-4 預處理總流程 22
2-3-5 利用金屬鹽進行預處理 23
2-3-6利用H2O2進行預處理 23
2-3-6利用不同比例混合溶劑進行預處理 24
2-3-7利用Fe3O4進行預處理 24
2-3-8 利用纖維素?水解溶液中碳水化合物 25
第三章 結果與討論 26
3-1 預處理流程與成果 26
3-2 探討金屬鹽和過氧化氫在預處理中的作用 27
3-3 探討混合溶劑的影響 28
3-4 探討過氧化氫含量對效率的影響 30
3-5 探討溫度和時間對預處理的影響 31
3-6 探討水解?水解預處理溶液中的低聚糖 32
3-7 以四氧化三鐵做為鐵鹽進行芬頓預處理 33
第四章 結論 35
參考資料 36
參考文獻 1. BP, BP Statistical Review of World Energy. 2017, 10.
2. Zhou, C. H.; Xia, X.; Lin, C. X.; Tong, D. S.; Beltramini, J., Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 2011, 40 (11), 5588-617.
3. Wang, S.; Dai, G.; Yang, H.; Luo, Z., Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 2017, 62, 33-86.
4. Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews 2006, 106 (9), 4044-4098.
5. Klass, D. L., Biomass for renewable energy and fuels. Encyclopedia of energy 2004, 1 (1), 193-212.
6. Loow, Y.-L.; Wu, T. Y.; Lim, Y. S.; Tan, K. A.; Siow, L. F.; Jahim, J. M.; Mohammad, A. W., Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy conversion and management 2017, 138, 248-260.
7. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L., The path forward for biofuels and biomaterials. science 2006, 311 (5760), 484-489.
8. Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T., Challenges and opportunities in improving the production of bio- ethanol. Progress in Energy and Combustion Science 2015, 47, 60-88.
9. Sarkar, N.; Ghosh, S. K.; Bannerjee, S.; Aikat, K., Bioethanol production from agricultural wastes: an overview. Renewable energy 2012, 37 (1), 19-27.
10. Ilnicka, A.; Lukaszewicz, J. P., Discussion remarks on the role of wood and chitin constituents during carbonization. Frontiers in Materials 2015, 2, 20.
11. Ma, R.; Xu, Y.; Zhang, X., Catalytic oxidation of biorefinery lignin to value?added chemicals to support sustainable biofuel production. ChemSusChem 2015, 8 (1), 24-51.
12. Ravindran, R.; Jaiswal, A. K., A comprehensive review on pre- treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresource technology 2016, 199, 92-102.
13. Kato, D. M.; Elia, N.; Flythe, M.; Lynn, B. C., Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresource technology 2014, 162, 273-278.
14. Jain, P.; Vigneshwaran, N., Effect of Fenton’s pretreatment on cotton cellulosic substrates to enhance its enzymatic hydrolysis response. Bioresource technology 2012, 103 (1), 219-226.
15. Jung, Y. H.; Kim, H. K.; Park, H. M.; Park, Y.-C.; Park, K.; Seo, J.-H.; Kim, K. H., Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresource technology 2015, 179, 467-472.
16. Bhange, V. P.; William, S. P.; Sharma, A.; Gabhane, J.; Vaidya, A. N.; Wate, S. R., Pretreatment of garden biomass using Fenton’s reagent: influence of Fe 2+ and H 2 O 2 concentrations on lignocellulose degradation. Journal of Environmental Health Science and Engineering 2015, 13 (1), 12.
17. He, Y.-C.; Ding, Y.; Xue, Y.-F.; Yang, B.; Liu, F.; Wang, C.; Zhu, Z.-Z.; Qing, Q.; Wu, H.; Zhu, C., Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresource technology 2015, 193, 324-330.
18. Jeong, S.-Y.; Lee, J.-W., Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood. Bioresource technology 2016, 200, 121-127.
19. Zhang, K.; Si, M.; Liu, D.; Zhuo, S.; Liu, M.; Liu, H.; Yan, X.; Shi, Y., A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. Biotechnology for biofuels 2018, 11 (1), 31.
20. Wu, K.; Ying, W.; Shi, Z.; Yang, H.; Zheng, Z.; Zhang, J.; Yang, J., Fenton Reaction-Oxidized Bamboo Lignin Surface and Structural Modification to Reduce Nonproductive Cellulase Binding and Improve Enzyme Digestion of Cellulose. ACS Sustainable Chemistry & Engineering 2018, 6 (3), 3853-3861.
21. Zhang, K.; Pei, Z.; Wang, D., Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresource technology 2016, 199, 21-33.
22. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.; Holtzapple, M.; Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology 2005, 96 (6), 673-686.
23. Lee, H.; Hamid, S.; Zain, S., Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal 2014, 2014.
24. Wang, S.; Luo, Z., Pyrolysis of biomass. Walter de Gruyter GmbH & Co KG: 2017; Vol. 1.
25. Vorwerk, S.; Somerville, S.; Somerville, C., The role of plant cell wall polysaccharide composition in disease resistance. Trends in plant science 2004, 9 (4), 203-209.
26. Heredia, A.; Jimenez, A.; Guillen, R., Composition of plant cell walls. Zeitschrift fur Lebensmittel-Untersuchung und Forschung 1995, 200 (1), 24-31.
27. Templeton, D. W.; Sluiter, A. D.; Hayward, T. K.; Hames, B. R.; Thomas, S. R., Assessing corn stover composition and sources of variability via NIRS. Cellulose 2009, 16 (4), 621-639.
28. Huber, G. W.; Dumesic, J. A., An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today 2006, 111 (1-2), 119-132.
29. Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews 2010, 110 (6), 3479-3500.
30. Fan, L.; Gharpuray, M.; Lee, Y., Cellulose hydrolysis. Biotechnology monographs. Volume 3. 1987.
31. Peng, F.; Peng, P.; Xu, F.; Sun, R.-C., Fractional purification and bioconversion of hemicelluloses. Biotechnology advances 2012, 30 (4), 879-903.
32. Sipponen, H.; Rahikainen, J.; Leskinen, T.; Pihlajaniemi, V.; Mattinen, M.-L.; Lange, H.; Crestini, C.; Osterberg, M., Structural changes of lignin in biorefinery pretreatments and consequences to enzyme-lignin interactions. Nord. Pulp Pap. Res. J. 2017, 32, 547-568.
33. Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource technology 2010, 101 (13), 4851-4861.
34. El Mansouri, N.-E.; Salvado, J., Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products 2006, 24 (1), 8-16.
35. Rivas, B.; Dom?nguez, J.; Dom?nguez, H.; Parajo, J., Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme and Microbial Technology 2002, 31 (4), 431-438.
36. Torget, R. W.; Kim, J. S.; Lee, Y., Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & engineering chemistry research 2000, 39 (8), 2817-2825.
37. Liu, L.; Sun, J.; Li, M.; Wang, S.; Pei, H.; Zhang, J., Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresource Technology 2009, 100 (23), 5853-5858.
38. Kamireddy, S. R.; Li, J.; Tucker, M.; Degenstein, J.; Ji, Y., Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Industrial & Engineering Chemistry Research 2013, 52 (5), 1775-1782.
39. Hegner, J.; Pereira, K. C.; DeBoef, B.; Lucht, B. L., Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Letters 2010, 51 (17), 2356-2358.
40. To, A. T.; Chung, P. W.; Katz, A., Weak?acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post?synthetic functionalization of the carbon surface. Angewandte Chemie International Edition 2015, 54 (38), 11050- 11053.
41. Kobayashi, H.; Kaiki, H.; Shrotri, A.; Techikawara, K.; Fukuoka, A., Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst. Chemical science 2016, 7 (1), 692-696.
42. Onda, A.; Ochi, T.; Yanagisawa, K., Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry 2008, 10 (10), 1033-1037.
43. Michalska, K.; Miazek, K.; Krzystek, L.; Ledakowicz, S., Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource technology 2012, 119, 72-78.
44. Hammel, K. E.; Kapich, A. N.; Jensen Jr, K. A.; Ryan, Z. C., Reactive oxygen species as agents of wood decay by fungi. Enzyme and microbial technology 2002, 30 (4), 445-453.
45. Cheng, S.; D’cruz, I.; Wang, M.; Leitch, M.; Xu, C., Highly efficient liquefaction of woody biomass in hot-compressed alcohol? water co-solvents. Energy & Fuels 2010, 24 (9), 4659- 4667.
46. Chiaramonti, D.; Prussi, M.; Ferrero, S.; Oriani, L.; Ottonello, P.; Torre, P.; Cherchi, F., Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and bioenergy 2012, 46, 25-35.
47. Martin-Sampedro, R.; Eugenio, M.; Garcia, J.; Lopez, F.; Villar, J.; Diaz, M., Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass and bioenergy 2012, 42, 97-106.
48. Jorgensen, H.; Kristensen, J. B.; Felby, C., Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining 2007, 1 (2), 119-134.
49. Binder, J. B.; Raines, R. T., Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences 2010, 107 (10), 4516-4521.
50. Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research 2009, 48 (8), 3713-3729.
51. Ko, J. K.; Bak, J. S.; Jung, M. W.; Lee, H. J.; Choi, I.-G.; Kim, T. H.; Kim, K. H., Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology 2009, 100 (19), 4374-4380.
52. Wyman, C. E.; Decker, S. R.; Himmel, M. E.; Brady, J. W.; Skopec, C. E.; Viikari, L., Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural diversity and functional versatility 2005, 1, 1023-1062.
53. Iakovou, E.; Bochtis, D.; Vlachos, D.; Aidonis, D., Supply Chain Management for Sustainable Food Networks. John Wiley & Sons: 2016.
54. Husseien, M.; Amer, A.; El-Maghraby, A.; Hamedallah, N., A comprehensive characterization of corn stalk and study of carbonized corn stalk in dye and gas oil sorption. Journal of Analytical and Applied Pyrolysis 2009, 86 (2), 360-363.
55. Wiggers, H.; Cheleski, J.; Zottis, A.; Oliva, G.; Andricopulo, A. D.; Montanari, C. A., Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays. Analytical biochemistry 2007, 370 (1), 107-114.
56. Zhao, X.; Cheng, K.; Liu, D., Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied microbiology and biotechnology 2009, 82 (5), 815.
57. Zhang, H.; Li, N.; Pan, X.; Wu, S.; Xie, J., Oxidative conversion of glucose to gluconic acid by iron (III) chloride in water under mild conditions. Green Chemistry 2016, 18 (8), 2308-2312.
58. Minowa, T.; Fang, Z.; Ogi, T.; Varhegyi, G., Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. Journal of chemical engineering of Japan 1998, 31 (1), 131-134.
59. Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.; Broadbelt, L. J., The alpha–bet (a) of glucose pyrolysis: computational and experimental investigations of 5- hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustainable Chemistry & Engineering 2014, 2 (6), 1461-1473.
60. Klinke, H. B.; Thomsen, A.; Ahring, B. K., Inhibition of ethanol- producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied microbiology and biotechnology 2004, 66 (1), 10-26.
指導教授 李光華 徐新光 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明