參考文獻 |
[1] R.K. Pachauri, L.A. Meyer, Climate Change 2014: Synthesis Report, IPCC, 2014.
[2] C. Le Quere, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P.P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, Global Carbon Budget 2017, Earth System Science Data Discussions, 2018.
[3] 經部能源局, 能源平衡表, 2016. https://www.moeaboe.gov.tw/ecw/populace/web_book/ WebReports.aspx?book=B_CH&menu_id=145
[4] 李堅明, 我看華沙氣候會議, 能源報導月刊, pp. 37-40, 2014.
[5] T. Schmitz-Rode, G. Alzen, R. W. Giinther, H. Pott, CO2 Spray Mini-Injector for Digital Subtraction Angiography versus PC-Controlled Injection System: Experiments in Dogs, CardioVascular and Interventional Radiology, vol. 16, pp. 297-302, 1993.
[6] I. Corazza, N. Taglieri, E. Pirazzini, P. L. Rossi, A. Lombi, F. Scalise, J. G. Caridi, R. Zannoli, Carbon Dioxide Coronary Angiography: A Mechanical Feasibility Study with a Cardiovascular Simulator, AIP Advances, New York, 2018.
[7] A. A. Olajire, Valorization of Greenhouse Carbon Dioxide Emissions into Value-Added Products by Catalytic Processes, Journal of CO2 Utilization, vol. 3, pp. 74-92, 2013.
[8] 楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[9] M. A. Nemitallah , M. A. Habib , H.M. Badr, S. A. Said, A. Jamal, R. B.Mansour, E. M. A. Mokheimer, K. Mezghani1, Oxy-Fuel Combustion Technology: Current Status, Applications, and Trends, International Journal of Energy Research, vol. 41, pp. 1670-1708, 2017.
[10] S. Cavenati, C. A. Grande, A. E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
[11] D. Ko, R. Siriwardane, L. T. Biegler, Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration, Industrial & Engineering Chemistry Research, vol. 42, pp. 339-348, 2003.
[12] K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery, Industrial & Engineering Chemistry Research, vol. 34, pp. 591-598, 1995.
[13] M. T. Ho, G. W. Allinson, D. E. Wiley, Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption, Industrial & Engineering Chemistry Research, vol. 47, pp. 4883-4890, 2008.
[14] R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I. A. Karimi, M. Amanullah, Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO2 Capture via Finite Volume Simulation, Industrial & Engineering Chemistry Research, vol. 52, pp. 4249-4265, 2013.
[15] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 Capture from Dry Flue Gas by Vacuum Swing Adsorption: A Pilot Plant Study, AIChE Journal, vol. 60, pp. 1830-1842, 2014.
[16] Z. Liu, C. A. Grande, P. Li, J. Yu, A. E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for Carbon Dioxide Capture From Flue Gas, Separation and Purification Technology, vol. 81, no. 3, pp. 307-317, 2011.
[17] Q. Wang, J. Luo, Z. Zhong, Ar. Borgna, CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends, Energy & Environmental Science, vol. 4, p. 42, 2011.
[18] G. D. Oreggioni, S. Brandani, M. Luberti, Y. Baykan, D. Friedrich, H. Ahn, CO2 Capture from Syngas by an Adsorption Process at a Biomass Gasification CHP Plant: Its Comparison with Amine-Based CO2 Capture, International Journal of Greenhouse Gas Control, vol. 35, pp. 71-81, 2015.
[19] K. P. Resnik, Aqua Ammonia Process for Simultaneous Removal of CO2, SO2 and NOx, Int. J. Environmental Technology and Management, vol. 4, pp. 89-104, 2004.
[20] X. Pan, D. Clodic, J. Toubassy, CO2 Capture by Anti-Sublimation Process and Its Technical Economic Analysis, Greenhouse Gases: Science and Technology, vol. 3, pp. 8-20, 2013.
[21] D.M. Todd, Gas Turbine Improvements Enhance IGCC Viability, Gasification Technologies Conference, San Francisco, 2000.
[22] Tampa Electric Company, Proposed EPA Issuance of a National Pollutant Discharge Elimination System (NPDES) Permit for a New Source, Proposed DOE Clean Coal Cost-shared Financial Assistance Under the DOE Clean Coal Technology Demonstration Program: Environmental Impact Statement, vol. 1, pp. 233-236, 1994.
[23] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[24] Y. A. Cengel, M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill, New York, 2004.
[25] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Carnegie Mellon University Press, Pittsburgh, 2010.
[26] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[27] S. U. Rege, R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[28] C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[29] A. E. Rodrigues, M. D. LeVan, D. Tondeur, Adsorption: Science and Technology, Kluwer, Alphen aan den Rijn, 1988.
[30] W. Choi, T. Kwon, Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[31] D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[32] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter, A. D. Ebner, Puri?cation of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Puri?cation Technology, vol. 193, pp. 91-102, 2018.
[33] B. K. Na, H. L. Lee, K. K. Koo, H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[34] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[35] J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[36] S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[37] L. Jiang, V.G. Fox, L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[38] A. Fuderer, E. Rudelstorfer, Selective Adsorption Process". US Patent 3986849, 1976.
[39] P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[40] R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[41] S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[42] E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[43] R. Singh, M. K. R. Reddy, S. Wilson, K. Joshi , J. C. D. D. Costa, P. Webley, High Temperature Materials for CO2 Capture, Energy Procedia, vol. 1, pp. 623-630, 2009.
[44] Q. Huang, M. Ei?, Commercial Adsorbents as Benchmark Materials for Separation of Carbon Dioxide and Nitrogen by Vacuum Swing Adsorption Process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[45] R. Haghpanah, A. Rajendran, S. Farooq, I. A. Karimi, Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186-9198, 2014.
[46] V. G. Gomes, K. W. K. Yee, Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases, Separation and Purification Technology, vol. 28, pp. 161-171, 2002.
[47] J. Zhang, P. A. Webley, P. Xiao, Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture from Flue Gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[48] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues, R. F. P. M. Moreira, Carbon Dioxide-Nitrogen Separation Through Pressure Swing Adsorption, Chemical Engineering Journal, vol. 172, pp. 698-704, 2011.
[49] S. V. Sivakumar, D. P. Rao, Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2?N2?13X Zeolite System, Industrial & Engineering Chemistry Research, vol. 50, pp. 3426-3436, 2011.
[50] P. A. S. Moura, D. P. Bezerra, E. Vilarrasa-Garcia, M. Bastos-Neto, D. C. S. Azevedo, Adsorption Equilibria of CO2 and CH4 in Cation-Exchanged Zeolites 13X, Adsorption-Journal of the International Adsorption Society, vol. 22, pp. 71-80, 2016.
[51] J. H. Park, H. T. Beum, J. N. Kim, S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[52] L. Wang, Z. Liu, P. Li, J. Yu, A. E. Rodrigues, Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide, Chemical Engineering Journal, vol. 197, pp. 151-161, 2012.
[53] A. Golmakani, S. Fatemi, J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[54] L. Riboldi and O. Bolland, Evaluating Pressure Swing Adsorption as a CO2 Separation Technique in Coal-Fired Power Plants, International Journal of Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[55] M. Zaman, J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal of Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[56] N. Susarla, R. Haghpanah, I. A. Karimi, S. Farooq, A. Rajendran, L. S. C. Tan and J. S. T. Lim, Energy and Cost Estimates for Capturing CO2 from a Dry Flue Gas Using Pressure/Vacuum Swing Adsorption, Chemical Engineering Research and Design, vol. 102, pp. 354-367, 2015.
[57] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han, J. N. Kim, A 2-stage PSA Process for The Recovery of CO2 from Flue Gas and Its Power Consumption, Studies in Surface Science and Catalysis, no. 153, pp. 405-410, 2004.
[58] F. Samimi, Z. Khadem Modarresi, O. Dehghani, M.R. Rahimpour, A. Bolhasani, Application of Response Surface Methodology of an Industrial Methylacetylene and Propadiene Hydrogenation Reactor, Journal of the Taiwan Institute of Chemical Engineers, vol. 46, pp. 51-64, 2015.
[59] 陳威宇, 以變壓吸附法純化氣化合成氣經富氧燃燒後高純度二氧化碳之模擬研究, 國立中央大學,碩士論文, 民國106年.
[60] D. Duong, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[61] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[62] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[63] E. N. Fuller, P. D. Schettler, J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Gas Chromatography, vol. 3, pp. 222-227, 1965.
[64] E. N. Fuller, K. Ensley, J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[65] D. F. Fairbanks, C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[66] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[67] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[68] S. Farooq, D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[69] N. Wakao, S. Kaguei, T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[70] G. Carta, A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[71] J. Karger, D. M. Ruthven, J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[72] M. D. LeVan, G. Carta, C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[73] K. Kawazoe, M. Suzuki, K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon., Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[74] H. Qinglin, S. M. Sundaram, S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[75] X. Hu, E. Mangano, D. Friedrich, H. Ahn, S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[76] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[77] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學,碩士論文, 民國104年.
[78] J. M. Smith, H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, Singapore, 1987.
[79] 吳碧卿, 製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗, 國立中央大學,碩士論文, 民國106年.
[80] J. J. Carroll, Acid Gas Injection and Carbon Dioxide Sequestration, John Wiley & Sons, Hoboken, 2010.
[81] 徐彩峰, 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗, 國立中央大學,碩士論文, 民國107年.
[82] National Energy Technology Laboratory, Case B11A Performance Results, Cost and Performance Baseline for Fossil Energy Plants, vol. 1a, pp. 1-240, 2015.
[83] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[84] R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[85] R. G. Lomax, D L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[86] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[87] G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[88] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[89] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[90] Z. Helwani, A. D. Wiheeb, J. Kim, M. R. Othman, In-Situ Mineralization of Carbon Dioxide in a Coal-Fired Power Plant, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 38, no. 4, pp. 606-611, 2016.
[91] A. Bandyopadhyay, Amine Versus Ammonia Absorption of CO2 as a Measure of Reducing GHG Emission: A Critical Analysis, Clean Technologies and Environmental Policy, vol. 13, pp. 269-294, 2011.
[92] J. J. Liang, P. M. Bentlerc, A T-Distribution Plot to Detect Non-Multinormality, Computational Statistics & Data Analysis, vol. 30, no. 1, pp. 31-44, 1999.
[93] S. K. Ahn, F-Probability Plot and Its Application to Multivariate Normality, Communications in Statistics - Theory and Methods, vol. 21, pp. 997-1023, 1992.
[94] R. Z. Li, K. T. Fang, L. X. Zhu, Some Q-Q Probability Plots to Test Spherical and Elliptical Symmetry, Journal of Computational and Graphical Statistics, vol. 6, no. 4, pp. 435-450, 1997.
[95] D. Y. C. Leunga, G. Caramannab and M. M. Maroto-Valerb, An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable Sustainable Energy Reviews, vol. 39, pp. 426-443, 2014. |