博碩士論文 105324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.142.201.93
姓名 沈珍瑜(Chen-Yu Shen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析
★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 變壓吸附程序是一種分離氣體混合物的技術,根據不同氣體成份對吸附劑吸附能力的不同,進而利用吸附選擇性的高低來篩選氣體,再搭配吸附劑在高壓利於吸附、低壓利於脫附之特性,進行高低壓循環程序達到氣體分離的目的。具有容易操作、吸附劑可再生利用等優點。本研究利用變壓吸附法將二氧化碳濃縮以利後續封存,減少二氧化碳排放至大氣中,避免溫室效應的惡化。
本研究以雙塔六步驟變壓吸附法捕獲經水煤氣轉化後之合成氣中的二氧化碳,進料氣體以41.4%二氧化碳與58.6%氮氣模擬合成氣經過水煤氣轉化後的組成。選用13X沸石作為吸附劑,並將其填入吸附塔內進行突破及脫附曲線實驗,藉由改變不同的進料壓力與溫度,觀察其對突破曲線及脫附曲線之影響,並作為後續變壓吸附程序參數探討的基礎。
為降低實驗成本,利用實驗設計分析方法探討雙塔六步驟變壓吸附程序之二氧化碳捕獲實驗,並建立兩水準之部分因子設計(fractional factorial design),探討各操作變因(進料壓力、溫度、逆向減壓壓力、進料加壓/同向減壓時間、高壓吸附/逆向減壓時間、高壓吸附/低壓沖洗時間)對製程的影響。實驗結果發現對純度而言,進料壓力及高壓吸附/逆向減壓時間為顯著因子;對回收率而言,各因子皆不顯著。在進料壓力3.45 atm、步驟一時間140秒、步驟二時間160秒、步驟三時間20秒、抽真空壓力0.05 atm、溫度358 K之操作條件下,純度可達90.39%、回收率79.73%。
最後以逐步回歸方式建立純度、回收率與變因之模型,以此模型來進行實驗預測、製程最佳化、量產製程變異性及提供系統操作之參數決策。
摘要(英) Pressure swing adsorption process is a technique used to separate gas mixtures according to the different adsorption capacities and selectivity toward adsorbent. Based on the property of adsorption at high pressure and desorption at low pressure, we can choose the appropriate processes to achieve the desired separation. Pressure swing adsorption process is used to concentrate carbon dioxide in order to mitigate the effects of global warming and reduce emissions.
In this study, pressure swing adsorption process is utilized to separate CO2 and N2 from syngas after water gas shift reaction. The compositions of syngas are simulated as 41.4% CO2 / 58.6% N2. To purify 41.4% CO2 with balance N2 as a captured gas mixture, two-bed six-step pressure swing adsorption process using zeolite 13X were experimentally studied.
Breakthrough curve experiments were carried out. These experimental results could be foundation of investigating pressure swing adsorption process. Two-bed pressure swing adsorption process was applied to carry out CO2 capture experiment.
The design of experiment (DOE) of two-bed six-step pressure swing adsorption process. Pressurization / cocurrent depressurization time, adsorption / countercurrent depressurization time, adsorption / purge time, feed pressure, temperature, vacuum pressure are the factors of two-level six-factor fractional factorial design to investigate the change of CO2 concentration and recovery. The analysis shows that the main effects feed pressure and adsorption / countercurrent depressurization time were significant effects for purity. CO2 with 90.39% purity and 79.73% recovery was found at pressurization / cocurrent depressurization time 140 s, adsorption / countercurrent depressurization time 160 s, adsorption / purge time 20 s, temperature 358 K, feed pressure 3.45 atm and a fixed vacuum pressure of 0.05 atm.
Finally, we build a model relating purity to factors and recovery to factors, and use a regression model to present the results of our designed experiment.
關鍵字(中) ★ 變壓吸附
★ 合成氣
★ 實驗設計
★ 二氧化碳
關鍵字(英) ★ pressure swing adsorption
★ syngas
★ design of experiment
★ CO2
論文目次 摘要 i
ABSTRACT iii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章、 緒論 1
第二章、 簡介與文獻回顧 5
2-1 吸附之簡介 5
2-2 變壓吸附法基本操作步驟 8
2-3 PSA之程序發展與改進 11
2-4 吸附劑及其選擇性 15
2-5 等溫平衡吸附曲線 18
2-6 突破曲線與脫附曲線 20
2-7 文獻回顧 22
第三章、 實驗設備及方法 26
3-1 吸附劑選擇 26
3-2 突破曲線與脫附曲線實驗 28
3-2-1 實驗步驟 32
3-3 變壓吸附實驗 33
3-3-1 實驗裝置、各部規格及特性 36
3-3-2 實驗步驟 40
3-4 部分因子設計 43
第四章、 實驗結果與討論 48
4-1 吸附劑選擇計算與討論 48
4-2 突破曲線實驗與脫附曲線實驗結果與討論 54
4-2-1 流速對突破曲線的影響 55
4-2-2 流速對脫附曲線的影響 57
4-2-3 塔內溫度對突破曲線的影響 59
4-2-4 塔內溫度對脫附曲線的影響 61
4-3 變壓吸附實驗之實驗設計分析 63
4-3-1 Effects plot之分析 66
4-3-2 變異數分析(Analysis of Variance, ANOVA) 71
4-3-3 主效用圖(Main effect plot)與交互作用圖(Interaction plot) 73
4-3-4 逐步回歸(Stepwise regression) 81
4-3-5 殘差分析(Residual analysis) 85
4-3-6 以模型回歸之結果與實驗值比較 91
4-3-7 模型修正 94
4-4 能耗計算 97
第五章、 結論 100
參考文獻 102
附錄A、變壓吸附程序詳細數據 106
附錄B、名詞簡介 111
參考文獻 1. online resources: U.N. Environment: Renewable 2017 global status report. 2017.
2. 台灣電力公司, 台電系統歷年發電量, 2018年4月3日.
3. 行政院環保署, 溫室氣體排放統計, 2018年3月20日.
4. M.A. Moreira, A.M. Ribeiro, A.F.P. Ferreira, A.E. Rodrigues, Cryogenic pressure temperature swing adsorption process for natural gas upgrade, Separation and Purification Technology, 173:339-356, 2017.
5. E.J. Anthony, Solid looping cycles:? a new technology for coal conversion, Industrial & Engineering Chemistry Research, 47(6):1747-1754, 2008.
6. A. Julbe, V. Rouessac, J. Durand, A. Ayral, New approaches in the design of ceramic and hybrid membranes, Journal of Membrane Science, 316(1):176-185, 2008.
7. J. Jung, Y.S. Jeong, U. Lee, Y. Lim, C. Han, New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants, Industrial & Engineering Chemistry Research, 54(15):3865-3878, 2015.
8. A.D. Wiheeb, Z. Helwani, J. Kim, M.R. Othman, Pressure swing adsorption technologies for carbon dioxide capture, Separation and Purification Reviews, 45(2):108-121, 2016.
9. N.E.T. Laboratory, Evaluation of alternate water gas shift configurations for IGCC systems, 2009.
10. 黃緯農, 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬. 國立中央大學, 民國105年
11. L. Jiang, A.P. Roskilly, R.Z. Wang, Performance exploration of temperature swing adsorption technology for carbon dioxide capture, Energy Conversion and Management, 165:396-404, 2018.
12. A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processes, Pittsburgh, PA: Carnegie Mellon University, 2010.
13. C.W. Skarstrom, Oxygen concentration process, US Patent 3237377A, 1966.
14. E.H. Smith, Wave fornt analysis for design of fixed-bed adsorbers, Chemical Engineering Communications, 159(1):17-37, 1997.
15. P. Guerin, D. Domine, Process for separating a binary gaseous mixture by adsorption, US Patent 3155468A, 1964.
16. D. Ko, R. Siriwardane, L.T. Biegler, Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture, Industrial & Engineering Chemistry Research, 44(21):8084-8094, 2005.
17. G. Keller, Gas adsorption processes: state of the art, ACS Symposium Series, 223:145-169, 1983.
18. J. Ling, V.G. Fox, L.T. Biegler, Simulation and optimal design of multiple?bed pressure swing adsorption systems, AIChE Journal, 50(11):2904-2917, 2004.
19. W.D. Marsh, F.S. Pramuk, R.C. Hoke, C.W. Skarstrom, Pressure equalization depressuring in heatless adsorption, US Patent 3142547A, 1964.
20. R.T. Yang, Gas seperation by adsorption process: Lonndon: Imperial College Press, 1997.
21. K. Chihara, M. Suzuki, Air drying by pressure swing adsorption, Journal of Chemical Engineering of Japan, 16(4):293-299, 1983.
22. J.J. Collins, Air separation by adsorption, US Patent 4026680A, 1977.
23. A. Fuderer, E. Rudelstorfer, Selective adsorption process, US Patent 3986849A, 1976.
24. S. Sircar, T.C. Golden, Purification of hydrogen by pressure swing adsorption, Separation Science and Technology, 35(5):667-687, 2000.
25. T. Yamaguchi, Y. Kobayashi, Gas separation process, US Patent 5250088A, 1993.
26. A. Ntiamoah, J.H. Ling, P. Xiao, P.A. Webley, Y.C. Zhai, CO2 capture by vacuum swing adsorption: role of multiple pressure equalization steps, Adsorption-Journal of the International Adsorption Society, 21(6-7):509-522, 2015.
27. S. Sircar, Separation of multicomponent gas mixtures, US Patent 4171206A, 1979.
28. D. Diagne, M. Goto, T. Hirose, New PSA process with intermediate feed inlet position operated with dual refluxes: application to carbon dioxide removal and enrichment, Journal of Chemical Engineering of Japan, 27(1):85-89, 1994.
29. J.G. Jee, M.B. Kim, C.H. Lee, Adsorption characteristics of hydrogen mixtures in a layered bed:? binary, ternary, and five-component mixtures, Industrial & Engineering Chemistry Research, 40(3):868-878, 2001.
30. Y.H. Shen, Y. Zhou, D.D. Li, Q. Fu, D.H. Zhang, P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, International Journal of Greenhouse Gas Control, 65:55-64, 2017.
31. T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies, Journal of Petroleum Science and Engineering, 94-95:123-154, 2012.
32. S. Ga, H. Jang, J.H. Lee, New performance indicators for adsorbent evaluation derived from a reduced order model of an idealized PSA process for CO2 capture, Computers & Chemical Engineering, 102:188-212, 2017.
33. S.U. Rege, R.T. Yang, A simple parameter for seletting an adsorbent for gas aeparation by pressure swing adsorption, Separation Science and Technology, 36(15):3355-3365, 2001.
34. S.J. Li, S. Deng, L. Zhao, R.K. Zhao, M. Lin, Y.P. Du, Y.H. Lian, Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study, Applied Energy, 221:437-449, 2018.
35. K.T. Chue, J.N. Kim, Y.J. Yoo, S.H. Cho, R.T. Yang, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, 34(2):591-598, 1995.
36. V.G. Gomes, K.W.K. Yee, Pressure swing adsorption for carbon dioxide sequestration from exhaust gases, Separation and Purification Technology, 28(2):161-171, 2002.
37. W.K. Choi, T.I. Kwon, Y.K. Yeo, H. Lee, H.K. Song, B.K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, 20(4):617-623, 2003.
38. P.A. Webley, A. Qader, A. Ntiamoah, J. Ling, P. Xiao, Y. Zhai, A new multi-bed vacuum swing adsorption cycle for CO2 capture from flue gas streams, Energy Procedia, 114:2467-2480, 2017.
39. F.R. Dehjalali, A. Avami, A design procedure for the assessment of carbon capturing and utilization of flue gas from power plant using experimental data, Chemical Engineering Research and Design, 131:393-405, 2018.
40. P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption, 14(4-5):575-582, 2008.
41. J. Zhang, P.A. Webley, P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Conversion and Management, 49(2):346-356, 2008.
42. S.H. Cho, J.H. Park, H.T. Beum, S.S. Han, J.N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, 153:405-410, 2004.
43. L. Wang, Z. Liu, P. Li, J. Wang, J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, 18(5-6), 2012.
44. G.N. Nikolaidis, E.S. Kikkinides, M.C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74, Industrial & Engineering Chemistry Research, 56(4):974-988, 2017.
45. C.T. Chou, C.Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology, 39(1):51-65, 2004.
46. Y. Takamura, S. Narita, J. Aoki, S. Hironaka, S. Uchida, Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas, Separation and Purification Technology, 24(3):519-528, 2001.
47. B.K. Na, H. Lee, K.K. Koo, H.K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, 41(22):5498-5503, 2002.
48. 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗. 國立中央大學, 民國104年
49. 游欣敏, 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估. 國立中央大學, 民國105年
50. G.E.P. Box, J.S. Hunter, The 2 k — p fractional factorial designs, Technometrics, 3(3):311-351, 1961.
51. D.C. Montgomery, Design and analysis of experiments, 8th Edition International Student Version, New Jersey: John Wiley & Sons Inc, 2012.
52. W.L. McCabe, J.C. Smith, P. Harriott, Unit operations of chemical engineering. 7 ed, McGraw-Hill: New York, 2005.
53. K. Kotoh, M. Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Udab, T. Sugiyama, Overshooting breakthrough curves formed in pressure swing adsorption process for hydrogen isotope separation, Fusion Science and Technology, 56(1):173-178, 2009.
54. A. Golmakani, S. Fatemi, J. Tamnanloo, CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34, Industrial & Engineering Chemistry Research, 55(1):334-350, 2016.
55. R.A. Fisher, Sc.D., F.R.S., Statistical Methods for Research Workers, Edinburgh: Oliver & Boyd, 1925.
56. D.C. Montgomery, 實驗設計與分析. 高立圖書有限公司, 民國87年
57. D.C. Montgomery, E.A. Peck, Introduction to linear regression analysis, New Jersey: John Wiley & Sons Inc, 1982.
58. 蕭文龍, 多變量分析最佳入門實用書. 碁峰出版社, 2009年
59. J.M. Smith, H.C. NESS, Introduction to chemical engineering thermodynamics. 4th ed, New York: McGraw-Hill, 1987.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明