博碩士論文 105324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.218.250.241
姓名 江政諭(Jeng-Yu Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銦鉍銲料與銅基板之界面反應與接點強度測試
(Interfacial reaction and joint strength of In-Bi solder on Cu substrate)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要探討50In-50Bi/Cu系統及In/Cu系統之界面反應,並將界面反應分為液相/固相及固相/固相反應;利用SEM觀察界面反應,以EPMA及XRD分析介金屬化合物元素組成,進而利用動力學探討界面介金屬化合物之生長行為。此外,為了解接點受熱發生界面反應對接點之影響,以推力測試探討50In-50Bi/Cu系統於不同溫度長時間熱處理對接點之機械性質影響。於50In-50Bi/Cu系統液相/固相120 °C界面反應,界面生成Cu11In9,其厚度隨迴焊時間增加而遞增,於30分鐘迴焊時,界面介金屬化合物出現分層,元素組成皆為Cu11(In,Bi)9,上層含Bi量較少而下層含Bi量較多,經動力學計算,於120 °C之50In-50Bi/Cu系統液相/固相界面反應,Cu11In9?生成機制為擴散控制;In/Cu系統之液相/固相反應生成Cu11In9與CuIn2。
50In-50Bi/Cu系統之固相/固相反應,於熱處理溫度40 °C、60 °C、70 °C,Cu11In9-生長速率緩慢,至80 °C熱處理,Cu11In9?厚度明顯隨時間遞增。In/Cu系統之固相/固相反應中,於50 °C以下CuIn2為穩定相,70 °C以上CuIn2?傾向轉變為Cu11In9?。
50In-50Bi/Cu系統之推力測試中,隨著熱處理溫度增加,接點之機械強度遞增,且脆性斷裂模式比例遞減,綜合上述,經長時間熱處理實驗,結果顯示接點之機械性質有所提升。
摘要(英) This study investigates the interfacial reaction of 50In-50Bi/Cu and In/Cu. The interfacial reaction is classified into liquid-state reaction and solid-state reaction. The reaction evolution was analyzed by scanning electron microscopy to observe the microstructure, X-ray diffraction, and electron probe X-ray microanalysis to characterize the intermetallic compounds (IMCs) at the interface. Therefore, the growth behavior of IMCs is discussed through kinetics. To know the influence of solder joints during thermal processes, shear tests were carried out. In a 50In-50Bi/Cu system, an interfacial IMC, Cu11In9, was formed at 120 °C. In addition, the IMC thickness increased with reflow time. The interfacial IMC separated into two layers during 30-minutes reflow. The upper part was Cu11(In,Bi)9 which contained more Bi than the lower part of IMC. The growth mechanism of Cu11In9 in this system at 120 °C was diffusion-controlled by kinetics. In the In/Cu liquid state reaction, the interfacial IMCs are Cu11In9 and CuIn2, and the growth rate of Cu11In9 in the 50In-50Bi/Cu system was slow during 40 °C, 60 °C, and 70 °C aging processes. The thickness of the interfacial IMCs apparently increased when the aging temperature rose to 80 °C. As a result of the In/Cu solid-state reaction, CuIn2 existed as a low-temperature metastable phase under 50 °C. Moreover, CuIn2 tended to transform into Cu11In9 above 70 °C. For 50In-50Bi/Cu shear tests, the shear strength of solder joints increased with the aging time at various temperatures. In addition, the cases of brittle fracture decreased after aging. In conclusion, long-term aging could improve the mechanical properties of the 50In-50Bi/Cu system in this experiment.
關鍵字(中) ★ 低溫銲料
★ 界面反應
★ 推力測試
關鍵字(英) ★ low-temperature solder
★ interfacial reaction
★ shear test
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 序論 1
1-1 前言 1
1-2 電子構裝簡介 2
1-2-1 電子構裝技術 4
1-2-2 打線接合(Wire Bonding) 6
1-2-3 捲帶式自動接合(Tape Automated Bonding) 6
1-2-4 覆晶封裝(Flip Chip) 7
1-2-5 三維積體電路(3D Integrated Circuit) 8
1-3 焊接 11
1-3-1 波焊(Wave Soldering) 12
1-3-2 迴焊(Reflow Soldering) 12
1-4 界面反應 13
1-4-1 介金屬化合物(Intermetallic Compounds) 14
1-4-2 擴散理論 15
1-4-3 固液交互擴散(Solid-liquid Interdiffusion) 17
1-4-4 無鉛銲料(Lead-free Solders) 18
1-5 低溫無鉛合金銲料文獻回顧 19
1-5-1 Sn-In銲料 20
1-5-2 Sn-In-Ag銲料 21
1-5-3 Sn-Bi銲料 24
1-5-4 Sn-Bi-Ag銲料 27
1-5-5 Sn-Bi-Ga銲料 29
1-5-6 Ag-In銲料 31
1-6 研究動機 33
第二章 實驗方法 34
2-1 銲料及樣品製備 34
2-1-1 真空封管技術 35
2-2 液相/固相界面反應 35
2-3 固相/固相界面反應 36
2-4 試片分析 37
2-4-1 熱微差掃描分析儀(Differential Scanning Calorimetry,DSC) 37
2-4-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 38
2-4-3 能量散射光譜儀(Energy Dispersive Spectrometer,EDS) 38
2-4-4 場發式電子微探儀(Field Emission Electron Probe Micro-analsis,EPMA) 39
2-4-5 X射線繞射儀(X-ray Diffraction,XRD) 39
2-4-6 推力測試 40
第三章 結果與討論 42
3-1 液相/固相界面反應 42
3-1-1 50In-50Bi銲料分析 42
3-1-2 50In-50Bi/Cu之液相/固相界面反應 44
3-1-3 In/Cu之液相/固相界面反應 49
3-2 固相/固相界面反應 51
3-2-1 50In-50Bi/Cu之固相/固相界面反應 51
3-2-2 50In-50Bi/Cu系統界面反應之動力學探討 55
3-2-3 In/Cu之固相/固相界面反應 58
3-3 50In-50Bi/Cu之推力測試 73
3-3-1 剪應力值比較 73
3-3-2 斷裂模式分析 75
第四章 結論 80
參考文獻 82
參考文獻 [1] M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Materials Science and Engineering: R: Reports, Vol. 27, pp. 95-141, 2000.
[2] R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook: Semiconductor Packaging. Springer US, 2013.
[3] W. J. Greig, Integrated Circuit Packaging, Assembly and Interconnections. 2007, pp. 1-296.
[4] G. Harman, Wire Bonding in Microelectronics. McGraw-Hill Education, 2009.
[5] S. F. Al-Sarawi, D. Abbott, and P. D. Franzon, "A review of 3-D packaging technology," Ieee Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, Vol. 21, pp. 2-14, 1998.
[6] J. H. Lau, Flip Chip Technologies. McGraw-Hill, 1996.
[7] K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, Vol. 51, pp. 517-523, 2011.
[8] Y. Kim, S. K. Kang, S. D. Kim et al., "Wafer warpage analysis of stacked wafers for 3D integration," Microelectronic Engineering, Vol. 89, pp. 46-49, 2012.
[9] M. Judd and K. Brindley, "Soldering process," Soldering in Electronics Assembly (Second Edition), M. Judd and K. Brindley, Eds. Oxford: Newnespp. 1-22, 1999.
[10] K. Zeng and K. N. Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology," Materials Science and Engineering: R: Reports, Vol. 38, pp. 55-105, 2002.
[11] S. S. Ha, J. K. Jang, S. O. Ha et al., "Effect of multiple reflows on interfacial reaction and shear strength of Sn-Ag electroplated solder bumps for flip chip package," Microelectronic Engineering, Vol. 87, pp. 517-521, 2010.
[12] L. Bernstein, "Semiconductor joining by the solid?liquid?interdiffusion (SLID) Process I.," Journal of the Electrochemical Society, Vol. 113, pp. 1282-1288, 1966.
[13] J. C. Lin, L. W. Huang, G. Y. Jang et al., "Solid–liquid interdiffusion bonding between In-coated silver thick films," Thin Solid Films, Vol. 410, pp. 212-221, 2002.
[14] H. Liu, K. Wang, K. E. Aasmundtveit et al., "Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding," Journal of Electronic Materials, Vol. 41, pp. 2453-2462, 2012.
[15] T. A. Tollefsen, A. Larsson, O. M. Lovvik et al., "Au-Sn SLID bonding—properties and possibilities," Metallurgical and Materials Transactions B, Vol. 43, pp. 397-405, 2012.
[16] Waste electrical and electronic equipment. 2002:96:EC. 2003.
[17] The restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). 2002:95:EC. 2003.
[18] K. Zeng, R. Stierman, T.-C. Chiu et al., "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability," Journal of Applied Physics, Vol. 97, p. 024508, 2005.
[19] Z. Q. Mei, H. A. Holder, and H. A. VanderPlas, "Low-temperature solders," Hewlett-Packard Journal, Vol. 47, pp. 91-98, 1996.
[20] S. H. Ahn and Y. S. Kwon, "Popcorn phenomena in a ball grid array package," Ieee Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, Vol. 18, pp. 491-495, 1995.
[21] J. Glazer, "Microstructure and mechanical-properties of pb-free solder alloys for low-cost electronic assembly," Journal of Electronic Materials, Vol. 23, pp. 693-700, 1994.
[22] F. Tian, Z. Q. Liu, P. J. Shang et al., "Phase identification on the intermetallic compound formed between eutectic SnIn solder and single crystalline Cu substrate," Journal of Alloys and Compounds, Vol. 591, pp. 351-355, 2014.
[23] D. G. Kim and S. B. Jung, "Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate," Journal of Alloys and Compounds, Vol. 386, pp. 151-156, 2005.
[24] F. F. Tian and Z. Q. Liu, "The interfacial microstructure and Kirkendall voids in In-48Sn/Cu solder joint," 2013 14th International Conference on Electronic Packaging Technology, pp. 907-910, 2013.
[25] M. S. Yeh, "Evaluation of the mechanical properties of a ternary Sn-20In-2.8Ag solder," Journal of Electronic Materials, Vol. 31, pp. 953-956, 2002.
[26] M. S. Yeh, "Effects of indium on the mechanical properties of ternary Sn-In-Ag solders," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 34, pp. 361-365, 2003.
[27] S. K. Lin, C. W. Hsu, S. W. Chen et al., "Interfacial reactions in Sn–20In–2.8Ag/Cu couples," Materials Chemistry and Physics, Vol. 142, pp. 268-275, 2013.
[28] M. J. Chiang and T. H. Chuang, "Interfacial reaction between liquid Sn-20In-2.8Ag solder and Ag substrate," Zeitschrift Fur Metallkunde, Vol. 93, pp. 1194-1198, 2002.
[29] T. H. Chuang, K. W. Huang, and W. H. Lin, "Mechanisms for the intermetallic formation during the Sn-20In-2.8Ag/Ni soldering reactions," Journal of Electronic Materials, Vol. 33, pp. 374-381, 2004.
[30] S. W. Chen, W. Y. Lee, C. M. Hsu et al., "Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions," Materials Chemistry and Physics, Vol. 128, pp. 357-364, 2011.
[31] P. G. Kim and K. N. Tu, "Fast dissolution and soldering reactions on Au foils," Materials Chemistry and Physics, Vol. 53, pp. 165-171, 1998.
[32] H. Oulfajrite, A. Sabbar, M. Boulghallat et al., "Electrochemical behavior of a new solder material (Sn-In-Ag)," Materials Letters, Vol. 57, pp. 4368-4371, 2003.
[33] F. Hua, Z. Mei, and J. Glazer, "Eutectic Sn-Bi as an alternative to Pb-free solders," Electronic Components & Technology Conference, 1998. 48th IEEE, pp. 277-283, 1998.
[34] F. J. Wang, Y. Huang, Z. J. Zhang et al., "Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints," Materials, Vol. 10, p. 16, 2017.
[35] Q. K. Zhang, H. F. Zou, and Z. F. Zhang, "Influences of substrate alloying and reflow temperature on bi segregation behaviors at Sn-Bi/Cu interface," Journal of Electronic Materials, Vol. 40, pp. 2320-2328, 2011.
[36] P. J. Shang, Z. Q. Liu, D. X. Li et al., "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints," Scripta Materialia, Vol. 58, pp. 409-412, 2008.
[37] H. W. Miao and J. G. Duh, "Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging," Materials Chemistry and Physics, Vol. 71, pp. 255-271, 2001.
[38] J. I. Lee, S. W. Chen, H. Y. Chang et al., "Reactive wetting between molten Sn-Bi and Ni substrate," Journal of Electronic Materials, Vol. 32, pp. 117-122, 2003.
[39] Z. Mei and J. W. Morris, "CHARACTERIZATION OF EUTECTIC SN-BI SOLDER JOINTS," Journal of Electronic Materials, Vol. 21, pp. 599-607, 1992.
[40] M. McCormack, H. S. Chen, G. W. Kammlott et al., "Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping," Journal of Electronic Materials, Vol. 26, pp. 954-958, 1997.
[41] H. Hata, Y. Maruya, and I. Shohji, "Interfacial Reactions in Sn-57Bi-1Ag Solder Joints with Cu and Au Metallization," Materials Transactions, Vol. 57, pp. 887-891, 2016.
[42] Y. Maruya, H. Hata, I. Shohji et al., "Bonding Characteristics of Sn-57Bi-1Ag Low-Temperature Lead-Free Solder to Gold-Plated Copper," Procedia engineering, Vol. 184, pp. 223-230, 2017.
[43] A. K. Gain and L. Zhang, "Interfacial microstructure, wettability and material properties of nickel (Ni) nanoparticle doped tin–bismuth–silver (Sn–Bi–Ag) solder on copper (Cu) substrate," Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 3982-3994, 2016.
[44] S. K. Lin, T. L. Nguyen, S. C. Wu et al., "Effective suppression of interfacial intermetallic compound growth between Sn-58 wt.% Bi solders and Cu substrates by minor Ga addition," Journal of Alloys and Compounds, Vol. 586, pp. 319-327, 2014.
[45] C. H. Chen, B. H. Lee, H. C. Chen et al., "Interfacial Reactions of Low-Melting Sn-Bi-Ga Solder Alloy on Cu Substrate," Journal of Electronic Materials, Vol. 45, pp. 197-202, 2016.
[46] Y. Z. Ma, H. T. Luo, Y. J. Li et al., "Formation and evolution of intermetallic compounds between the In-3Ag solder and Cu substrate during soldering," Journal of Materials Science-Materials in Electronics, Vol. 26, pp. 7967-7976, 2015.
[47] P. T. Vianco, J. A. Rejent, A. F. Fossum et al., "Compression stress-strain and creep properties of the 52In-48Sn and 97In-3Ag low-temperature Pb-free solders," Journal of Materials Science-Materials in Electronics, Vol. 18, pp. 93-119, 2007.
[48] R. I. Made, C. L. Gan, L. L. Yan et al., "Study of Low-Temperature Thermocompression Bonding in Ag-In Solder for Packaging Applications," Journal of Electronic Materials, Vol. 38, pp. 365-371, 2009.
[49] G. Y. Li and X. Q. Shi, "Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints," Transactions of Nonferrous Metals Society of China, Vol. 16, pp. s739-s743, 2006.
[50] I. S. R. Aisha, A. Ourdjini, and O. S. Azlina, "The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation," World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, Vol. 10, pp. 107-111, 2016.
[51] B. ?imekova, E. Hodulova, I. Kova?ikova et al., Growth of the IMC at the interface of SnAgCuBi (Bi = 0,5; 1,0) solder joints with Cu substrate. 2012, pp. 107-110.
[52] B. Ali, M. F. M. Sabri, S. M. Said et al., "Microstructural and tensile properties of Fe and Bi added Sn-1Ag-0.5Cu solder alloy under high temperature environment," Microelectronics Reliability, Vol. 82, pp. 171-178, 2018.
[53] S. Jin, M. S. Kim, S. Kanayama et al., "Effect of indium on deformation of binary In-Bi alloys," 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), pp. 1-5, 2017.
[54] W. Keppner, R. Wesche, T. Klas et al., "Studies of compound formation at Cu-In, Ag-In and Au-In interfaces with perturbed γ-γ angular correlations," Thin Solid Films, Vol. 143, pp. 201-215, 1986.
[55] A. Parretta, M. L. Addonizio, A. Agati et al., "Influence of morphology and structure of Cu/In alloys on the properties of CuInSe2," Japanese Journal of Applied Physics, Vol. 32, p. 80, 1993.
[56] N. Orbey, R. W. Birkmire, T. W. F. Russell et al., "Copper-Indium Alloy Transformations," Journal of Phase Equilibria, Vol. 21, p. 509, 2000.
[57] B. Predel, "Bi-In (Bismuth-Indium)," B-Ba – C-Zr, O. Madelung, Ed. Berlin, Heidelberg: Springer Berlin Heidelbergpp. 1-6, 1992.
[58] J. Wojewoda-Budka and P. Zi?ba, "Formation and growth of intermetallic phases in diffusion soldered Cu/In–Bi/Cu interconnections," Journal of Alloys and Compounds, Vol. 476, pp. 164-171, 2009.
[59] J. W. Yoon, S. W. Kim, and S. B. Jung, "IMC growth and shear strength of Sn-Ag-Bi-In/Au/Ni/Cu BGA joints during aging," MATERIALS TRANSACTIONS, Vol. 45, pp. 727-733, 2004.
[60] A. A. Liu, H. K. Kim, K. N. Tu et al., Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films. 1996, pp. 2774-2780.
[61] T. C. Chang, M. H. Hon, and M. C. Wang, "Morphology and phase transformation at a solder joint in a solid-state reaction," Electrochemical and solid-state letters, Vol. 7, pp. J4-J8, 2004.
[62] P. R. Subramanian and D. E. Laughlin, "The Cu?In (Copper-Indium) system," Bulletin of Alloy Phase Diagrams, Vol. 10, pp. 554-568, 1989.
[63] N. Takeo, M. Hiroshi, and B. Shigeru, "Transition of Roughness Evolution in Cu–In Alloy Films by the Formation of Intermetallic Compounds," Japanese Journal of Applied Physics, Vol. 44, p. 1932, 2005.
[64] T. Nakano, T. Suzuki, N. Ohnuki et al., "Alloying and electrical properties of evaporated Cu–In bilayer thin films," Thin Solid Films, Vol. 334, pp. 192-195, 1998.
[65] F. Tian, Z. Q. Liu, and J. Guo, "Phase transformation between Cu(In,Sn)2 and Cu2(In,Sn) compounds formed on single crystalline Cu substrate during solid state aging," Journal of Applied Physics, Vol. 115, p. 043520, 2014.
[66] D. Yang, J. Cai, Q. Wang et al., "IMC growth and shear strength of Sn–Ag–Cu/Co–P ball grid array solder joints under thermal cycling," Journal of Materials Science: Materials in Electronics, Vol. 26, pp. 962-969, 2015.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明